Effect of Free Nitrous Acid on Nitrous Oxide Production and Denitrifying Phosphorus Removal by Polyphosphorus-Accumulating Organisms in Wastewater Treatment
The inhibition of free nitrous acid (FNA) on denitrifying phosphorus removal has been widely reported for enhanced biological phosphorus removal; however, few studies focus on the nitrous oxide (N2O) production involved in this process. In this study, the effects of FNA on N2O production and anoxic...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2018-01, Vol.2018 (2018), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2018 |
creator | Li, Aiguo Wen, Xueyou Fang, Xiaofeng Zhao, Zhirui Guo, Shan Li, Duo Miao, Zhijia Wan, Jingmin |
description | The inhibition of free nitrous acid (FNA) on denitrifying phosphorus removal has been widely reported for enhanced biological phosphorus removal; however, few studies focus on the nitrous oxide (N2O) production involved in this process. In this study, the effects of FNA on N2O production and anoxic phosphorus metabolism were investigated using phosphorus-accumulating organisms (PAOs) culture highly enriched (91±4%) in Candidatus Accumulibacter phosphatis. Results show that the FNA concentration notably inhibited anoxic phosphorus metabolism and phosphorus uptake. Poly-β-hydroxyalkanoate (PHA) degradation was completely inhibited when the FNA concentration was approximately 0.0923 mgHNO2-N/L. Higher initial FNA concentrations (0.00035 to 0.0103 mgHNO2-N/L) led to more PHA consumption/TN (0.444 to 0.916 mmol-C/(mmol-N·gVSS)). Moreover, it was found that FNA, rather than nitrite and pH, was likely the true inhibitor of N2O production. The highest proportion of N2O to TN was 78.42% at 0.0031 mgHNO2-N/L (equivalent to 42.44 mgNO2-N/L at pH 7.5), due to the simultaneous effects of FNA on the subsequent conversion of NO2 into N2O and then into N2. The traditional nitrite knee point can only indicate the exhaustion of nitrite, instead of the complete removal of TN. |
doi_str_mv | 10.1155/2018/9192607 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5944283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621800699</galeid><sourcerecordid>A621800699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-73d24d4bda325b17615b119829e5c2eac04ba351f34250ce93c6e6ad6867aa3b3</originalsourceid><addsrcrecordid>eNqNkktvEzEUhUcIRKvSHWtkiQ0ShPoxdsYbpKi0gFSRCBWxtO547iSuZuzUnmnJf-HH4pCQAiu88EPn87m-1imK54y-ZUzKM05ZdaaZ5opOHxXHXLByoljJHh_2QhwVpynd0DwqpqhWT4sjritZVlQfFz8u2hbtQEJLLiMi-eyGGMZEZtY1JPjDef7dNUgWMTSjHVwWwDfkPfosu3bj_JIsViGtVyFm-Av24Q46Um_IInSb9UGZzKwd-7GDYXtjHpfgXeoTcZ58gzTgPQwYyXVEGHr0w7PiSQtdwtP9elJ8vby4Pv84uZp_-HQ-u5pYqeQwmYqGl01ZNyC4rNlUsTwzXXGN0nIES8sahGStKLmkFrWwChU0qlJTAFGLk-Ldznc91j02NpeO0Jl1dD3EjQngzN-KdyuzDHdG6rLklcgGr_YGMdyOmAbTu2Sx68Bj_j3Daaml5JSyjL78B70JY_S5vUwJybeofqCW0KFxvg25rt2ampnirKJU_aLe7CgbQ0oR28OTGTXbfJhtPsw-Hxl_8WebB_h3GjLwegesnG_g3v2nHWYGW3igGdeyouIn1eLOgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035220499</pqid></control><display><type>article</type><title>Effect of Free Nitrous Acid on Nitrous Oxide Production and Denitrifying Phosphorus Removal by Polyphosphorus-Accumulating Organisms in Wastewater Treatment</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Li, Aiguo ; Wen, Xueyou ; Fang, Xiaofeng ; Zhao, Zhirui ; Guo, Shan ; Li, Duo ; Miao, Zhijia ; Wan, Jingmin</creator><contributor>Usack, Joseph</contributor><creatorcontrib>Li, Aiguo ; Wen, Xueyou ; Fang, Xiaofeng ; Zhao, Zhirui ; Guo, Shan ; Li, Duo ; Miao, Zhijia ; Wan, Jingmin ; Usack, Joseph</creatorcontrib><description>The inhibition of free nitrous acid (FNA) on denitrifying phosphorus removal has been widely reported for enhanced biological phosphorus removal; however, few studies focus on the nitrous oxide (N2O) production involved in this process. In this study, the effects of FNA on N2O production and anoxic phosphorus metabolism were investigated using phosphorus-accumulating organisms (PAOs) culture highly enriched (91±4%) in Candidatus Accumulibacter phosphatis. Results show that the FNA concentration notably inhibited anoxic phosphorus metabolism and phosphorus uptake. Poly-β-hydroxyalkanoate (PHA) degradation was completely inhibited when the FNA concentration was approximately 0.0923 mgHNO2-N/L. Higher initial FNA concentrations (0.00035 to 0.0103 mgHNO2-N/L) led to more PHA consumption/TN (0.444 to 0.916 mmol-C/(mmol-N·gVSS)). Moreover, it was found that FNA, rather than nitrite and pH, was likely the true inhibitor of N2O production. The highest proportion of N2O to TN was 78.42% at 0.0031 mgHNO2-N/L (equivalent to 42.44 mgNO2-N/L at pH 7.5), due to the simultaneous effects of FNA on the subsequent conversion of NO2 into N2O and then into N2. The traditional nitrite knee point can only indicate the exhaustion of nitrite, instead of the complete removal of TN.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2018/9192607</identifier><identifier>PMID: 29854809</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Anesthetics ; Bacteria - drug effects ; Bacteria - metabolism ; Batch Cell Culture Techniques ; Bioaccumulation ; Bioengineering ; Bioreactors - microbiology ; Biotechnology ; Candidatus Accumulibacter phosphatis ; Carbon ; Denitrification - drug effects ; Exhaustion ; Knee ; Laboratories ; Metabolism ; Nitrites ; Nitrites - analysis ; Nitrogen dioxide ; Nitrous acid ; Nitrous Acid - pharmacology ; Nitrous oxide ; Nitrous Oxide - metabolism ; Oxidation-Reduction ; pH effects ; Phosphorus ; Phosphorus - isolation & purification ; Phosphorus metabolism ; Phosphorus removal ; Physiological aspects ; Polyhydroxyalkanoates - metabolism ; Production processes ; Purification ; Sewage ; Temperature effects ; Waste Water - microbiology ; Wastewater treatment ; Water Purification - methods ; Water treatment</subject><ispartof>BioMed research international, 2018-01, Vol.2018 (2018), p.1-10</ispartof><rights>Copyright © 2018 Zhijia Miao et al.</rights><rights>COPYRIGHT 2018 John Wiley & Sons, Inc.</rights><rights>Copyright © 2018 Zhijia Miao et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2018 Zhijia Miao et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-73d24d4bda325b17615b119829e5c2eac04ba351f34250ce93c6e6ad6867aa3b3</citedby><cites>FETCH-LOGICAL-c565t-73d24d4bda325b17615b119829e5c2eac04ba351f34250ce93c6e6ad6867aa3b3</cites><orcidid>0000-0002-8745-6734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944283/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944283/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29854809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Usack, Joseph</contributor><creatorcontrib>Li, Aiguo</creatorcontrib><creatorcontrib>Wen, Xueyou</creatorcontrib><creatorcontrib>Fang, Xiaofeng</creatorcontrib><creatorcontrib>Zhao, Zhirui</creatorcontrib><creatorcontrib>Guo, Shan</creatorcontrib><creatorcontrib>Li, Duo</creatorcontrib><creatorcontrib>Miao, Zhijia</creatorcontrib><creatorcontrib>Wan, Jingmin</creatorcontrib><title>Effect of Free Nitrous Acid on Nitrous Oxide Production and Denitrifying Phosphorus Removal by Polyphosphorus-Accumulating Organisms in Wastewater Treatment</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>The inhibition of free nitrous acid (FNA) on denitrifying phosphorus removal has been widely reported for enhanced biological phosphorus removal; however, few studies focus on the nitrous oxide (N2O) production involved in this process. In this study, the effects of FNA on N2O production and anoxic phosphorus metabolism were investigated using phosphorus-accumulating organisms (PAOs) culture highly enriched (91±4%) in Candidatus Accumulibacter phosphatis. Results show that the FNA concentration notably inhibited anoxic phosphorus metabolism and phosphorus uptake. Poly-β-hydroxyalkanoate (PHA) degradation was completely inhibited when the FNA concentration was approximately 0.0923 mgHNO2-N/L. Higher initial FNA concentrations (0.00035 to 0.0103 mgHNO2-N/L) led to more PHA consumption/TN (0.444 to 0.916 mmol-C/(mmol-N·gVSS)). Moreover, it was found that FNA, rather than nitrite and pH, was likely the true inhibitor of N2O production. The highest proportion of N2O to TN was 78.42% at 0.0031 mgHNO2-N/L (equivalent to 42.44 mgNO2-N/L at pH 7.5), due to the simultaneous effects of FNA on the subsequent conversion of NO2 into N2O and then into N2. The traditional nitrite knee point can only indicate the exhaustion of nitrite, instead of the complete removal of TN.</description><subject>Anesthetics</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - metabolism</subject><subject>Batch Cell Culture Techniques</subject><subject>Bioaccumulation</subject><subject>Bioengineering</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Candidatus Accumulibacter phosphatis</subject><subject>Carbon</subject><subject>Denitrification - drug effects</subject><subject>Exhaustion</subject><subject>Knee</subject><subject>Laboratories</subject><subject>Metabolism</subject><subject>Nitrites</subject><subject>Nitrites - analysis</subject><subject>Nitrogen dioxide</subject><subject>Nitrous acid</subject><subject>Nitrous Acid - pharmacology</subject><subject>Nitrous oxide</subject><subject>Nitrous Oxide - metabolism</subject><subject>Oxidation-Reduction</subject><subject>pH effects</subject><subject>Phosphorus</subject><subject>Phosphorus - isolation & purification</subject><subject>Phosphorus metabolism</subject><subject>Phosphorus removal</subject><subject>Physiological aspects</subject><subject>Polyhydroxyalkanoates - metabolism</subject><subject>Production processes</subject><subject>Purification</subject><subject>Sewage</subject><subject>Temperature effects</subject><subject>Waste Water - microbiology</subject><subject>Wastewater treatment</subject><subject>Water Purification - methods</subject><subject>Water treatment</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkktvEzEUhUcIRKvSHWtkiQ0ShPoxdsYbpKi0gFSRCBWxtO547iSuZuzUnmnJf-HH4pCQAiu88EPn87m-1imK54y-ZUzKM05ZdaaZ5opOHxXHXLByoljJHh_2QhwVpynd0DwqpqhWT4sjritZVlQfFz8u2hbtQEJLLiMi-eyGGMZEZtY1JPjDef7dNUgWMTSjHVwWwDfkPfosu3bj_JIsViGtVyFm-Av24Q46Um_IInSb9UGZzKwd-7GDYXtjHpfgXeoTcZ58gzTgPQwYyXVEGHr0w7PiSQtdwtP9elJ8vby4Pv84uZp_-HQ-u5pYqeQwmYqGl01ZNyC4rNlUsTwzXXGN0nIES8sahGStKLmkFrWwChU0qlJTAFGLk-Ldznc91j02NpeO0Jl1dD3EjQngzN-KdyuzDHdG6rLklcgGr_YGMdyOmAbTu2Sx68Bj_j3Daaml5JSyjL78B70JY_S5vUwJybeofqCW0KFxvg25rt2ampnirKJU_aLe7CgbQ0oR28OTGTXbfJhtPsw-Hxl_8WebB_h3GjLwegesnG_g3v2nHWYGW3igGdeyouIn1eLOgw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Li, Aiguo</creator><creator>Wen, Xueyou</creator><creator>Fang, Xiaofeng</creator><creator>Zhao, Zhirui</creator><creator>Guo, Shan</creator><creator>Li, Duo</creator><creator>Miao, Zhijia</creator><creator>Wan, Jingmin</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8745-6734</orcidid></search><sort><creationdate>20180101</creationdate><title>Effect of Free Nitrous Acid on Nitrous Oxide Production and Denitrifying Phosphorus Removal by Polyphosphorus-Accumulating Organisms in Wastewater Treatment</title><author>Li, Aiguo ; Wen, Xueyou ; Fang, Xiaofeng ; Zhao, Zhirui ; Guo, Shan ; Li, Duo ; Miao, Zhijia ; Wan, Jingmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-73d24d4bda325b17615b119829e5c2eac04ba351f34250ce93c6e6ad6867aa3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anesthetics</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - metabolism</topic><topic>Batch Cell Culture Techniques</topic><topic>Bioaccumulation</topic><topic>Bioengineering</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Candidatus Accumulibacter phosphatis</topic><topic>Carbon</topic><topic>Denitrification - drug effects</topic><topic>Exhaustion</topic><topic>Knee</topic><topic>Laboratories</topic><topic>Metabolism</topic><topic>Nitrites</topic><topic>Nitrites - analysis</topic><topic>Nitrogen dioxide</topic><topic>Nitrous acid</topic><topic>Nitrous Acid - pharmacology</topic><topic>Nitrous oxide</topic><topic>Nitrous Oxide - metabolism</topic><topic>Oxidation-Reduction</topic><topic>pH effects</topic><topic>Phosphorus</topic><topic>Phosphorus - isolation & purification</topic><topic>Phosphorus metabolism</topic><topic>Phosphorus removal</topic><topic>Physiological aspects</topic><topic>Polyhydroxyalkanoates - metabolism</topic><topic>Production processes</topic><topic>Purification</topic><topic>Sewage</topic><topic>Temperature effects</topic><topic>Waste Water - microbiology</topic><topic>Wastewater treatment</topic><topic>Water Purification - methods</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Aiguo</creatorcontrib><creatorcontrib>Wen, Xueyou</creatorcontrib><creatorcontrib>Fang, Xiaofeng</creatorcontrib><creatorcontrib>Zhao, Zhirui</creatorcontrib><creatorcontrib>Guo, Shan</creatorcontrib><creatorcontrib>Li, Duo</creatorcontrib><creatorcontrib>Miao, Zhijia</creatorcontrib><creatorcontrib>Wan, Jingmin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Aiguo</au><au>Wen, Xueyou</au><au>Fang, Xiaofeng</au><au>Zhao, Zhirui</au><au>Guo, Shan</au><au>Li, Duo</au><au>Miao, Zhijia</au><au>Wan, Jingmin</au><au>Usack, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Free Nitrous Acid on Nitrous Oxide Production and Denitrifying Phosphorus Removal by Polyphosphorus-Accumulating Organisms in Wastewater Treatment</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>The inhibition of free nitrous acid (FNA) on denitrifying phosphorus removal has been widely reported for enhanced biological phosphorus removal; however, few studies focus on the nitrous oxide (N2O) production involved in this process. In this study, the effects of FNA on N2O production and anoxic phosphorus metabolism were investigated using phosphorus-accumulating organisms (PAOs) culture highly enriched (91±4%) in Candidatus Accumulibacter phosphatis. Results show that the FNA concentration notably inhibited anoxic phosphorus metabolism and phosphorus uptake. Poly-β-hydroxyalkanoate (PHA) degradation was completely inhibited when the FNA concentration was approximately 0.0923 mgHNO2-N/L. Higher initial FNA concentrations (0.00035 to 0.0103 mgHNO2-N/L) led to more PHA consumption/TN (0.444 to 0.916 mmol-C/(mmol-N·gVSS)). Moreover, it was found that FNA, rather than nitrite and pH, was likely the true inhibitor of N2O production. The highest proportion of N2O to TN was 78.42% at 0.0031 mgHNO2-N/L (equivalent to 42.44 mgNO2-N/L at pH 7.5), due to the simultaneous effects of FNA on the subsequent conversion of NO2 into N2O and then into N2. The traditional nitrite knee point can only indicate the exhaustion of nitrite, instead of the complete removal of TN.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29854809</pmid><doi>10.1155/2018/9192607</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8745-6734</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2018-01, Vol.2018 (2018), p.1-10 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5944283 |
source | MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Anesthetics Bacteria - drug effects Bacteria - metabolism Batch Cell Culture Techniques Bioaccumulation Bioengineering Bioreactors - microbiology Biotechnology Candidatus Accumulibacter phosphatis Carbon Denitrification - drug effects Exhaustion Knee Laboratories Metabolism Nitrites Nitrites - analysis Nitrogen dioxide Nitrous acid Nitrous Acid - pharmacology Nitrous oxide Nitrous Oxide - metabolism Oxidation-Reduction pH effects Phosphorus Phosphorus - isolation & purification Phosphorus metabolism Phosphorus removal Physiological aspects Polyhydroxyalkanoates - metabolism Production processes Purification Sewage Temperature effects Waste Water - microbiology Wastewater treatment Water Purification - methods Water treatment |
title | Effect of Free Nitrous Acid on Nitrous Oxide Production and Denitrifying Phosphorus Removal by Polyphosphorus-Accumulating Organisms in Wastewater Treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Free%20Nitrous%20Acid%20on%20Nitrous%20Oxide%20Production%20and%20Denitrifying%20Phosphorus%20Removal%20by%20Polyphosphorus-Accumulating%20Organisms%20in%20Wastewater%20Treatment&rft.jtitle=BioMed%20research%20international&rft.au=Li,%20Aiguo&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2018/9192607&rft_dat=%3Cgale_pubme%3EA621800699%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2035220499&rft_id=info:pmid/29854809&rft_galeid=A621800699&rfr_iscdi=true |