The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement
The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinfo...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2017-12, Vol.96 (6), p.1272-1281.e4 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1281.e4 |
---|---|
container_issue | 6 |
container_start_page | 1272 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 96 |
creator | Leib, David E. Zimmerman, Christopher A. Poormoghaddam, Ailar Huey, Erica L. Ahn, Jamie S. Lin, Yen-Chu Tan, Chan Lek Chen, Yiming Knight, Zachary A. |
description | The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vasculosum of the lamina terminalis (OVLT) and median preoptic nucleus (MnPO). We then identify molecularly defined cell types within the OVLT and MnPO that are activated by fluid imbalance and show that stimulation of these neurons is sufficient to drive drinking, cardiovascular responses, and negative reinforcement. Finally, we demonstrate that the thirst signal exits these regions through at least three parallel pathways and show that these projections dissociate the cardiovascular and behavioral responses to fluid imbalance. These findings reveal a distributed thirst circuit that motivates drinking by the common mechanism of drive reduction.
•The genes Agtr1a and Adcyap1 label thirst neurons in the OVLT and MnPO, respectively•SFO, OVLT, and MnPO thirst neurons control both drinking and blood pressure•Stimulation of thirst neurons in SFO, OVLT, and MnPO is negatively reinforcing•MnPO projections dissociate the cardiovascular and behavioral outputs of the LT
Leib et al. reveal the motivational mechanism by which the thirst circuit drives drinking. They show that molecularly defined cell types in three forebrain nuclei promote drinking by drive reduction and also coordinate the cardiovascular response to fluid imbalance. |
doi_str_mv | 10.1016/j.neuron.2017.11.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5940335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627317311224</els_id><sourcerecordid>1983449343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-4914b2370e6213d6c0f267c0d370b6961966ec5f34e763a4bf07b6a8b3cd0aa03</originalsourceid><addsrcrecordid>eNp9kUFvEzEQhS0EoqHlHyC0EpdedvGsvXZ8QUIpgapVkVB6trze2axDYhd7N1L_PY5SCuXQ00ieb97M8yPkHdAKKIiPm8rjFIOvagqyAqgohxdkBlTJkoNSL8mMzpUoRS3ZCXmT0oZS4I2C1-SkVrWYU9XMyNVqwGIZIrbROF-sBhfTWCxctJMbi4vo9pgOxf90fl2MQwzTeihucG3G3Cp-oPN9iBZ36Mcz8qo324RvH-opuV1-WS2-ldffv14uPl-XtmnkWHIFvK2ZpChqYJ2wtK-FtLTLT61QApQQaJuecZSCGd72VLbCzFtmO2oMZafk01H3bmp32Nm8OpqtvotuZ-K9Dsbppx3vBr0Oe90oThlrssD5g0AMvyZMo965ZHG7NR7DlDQoqZRo8ikZ_fAfuglT9NlepuaMc8U4yxQ_UjaGlCL2j8cA1Ye09EYf09KHtDSAzmnlsff_Gnkc-hPPX6eYv3PvMOpkHXqLnYtoR90F9_yG3_yzqHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983449343</pqid></control><display><type>article</type><title>The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Leib, David E. ; Zimmerman, Christopher A. ; Poormoghaddam, Ailar ; Huey, Erica L. ; Ahn, Jamie S. ; Lin, Yen-Chu ; Tan, Chan Lek ; Chen, Yiming ; Knight, Zachary A.</creator><creatorcontrib>Leib, David E. ; Zimmerman, Christopher A. ; Poormoghaddam, Ailar ; Huey, Erica L. ; Ahn, Jamie S. ; Lin, Yen-Chu ; Tan, Chan Lek ; Chen, Yiming ; Knight, Zachary A.</creatorcontrib><description>The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vasculosum of the lamina terminalis (OVLT) and median preoptic nucleus (MnPO). We then identify molecularly defined cell types within the OVLT and MnPO that are activated by fluid imbalance and show that stimulation of these neurons is sufficient to drive drinking, cardiovascular responses, and negative reinforcement. Finally, we demonstrate that the thirst signal exits these regions through at least three parallel pathways and show that these projections dissociate the cardiovascular and behavioral responses to fluid imbalance. These findings reveal a distributed thirst circuit that motivates drinking by the common mechanism of drive reduction.
•The genes Agtr1a and Adcyap1 label thirst neurons in the OVLT and MnPO, respectively•SFO, OVLT, and MnPO thirst neurons control both drinking and blood pressure•Stimulation of thirst neurons in SFO, OVLT, and MnPO is negatively reinforcing•MnPO projections dissociate the cardiovascular and behavioral outputs of the LT
Leib et al. reveal the motivational mechanism by which the thirst circuit drives drinking. They show that molecularly defined cell types in three forebrain nuclei promote drinking by drive reduction and also coordinate the cardiovascular response to fluid imbalance.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.11.041</identifier><identifier>PMID: 29268095</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>angiotensin ; Animals ; Behavior ; Behavior modification ; Brain ; Channelrhodopsins - genetics ; Channelrhodopsins - metabolism ; circuit ; drinking behavior ; Drinking Behavior - physiology ; drive reduction ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; homeostasis ; hypothalamus ; lamina terminalis ; lateral hypothalamus ; median preoptic nucleus ; Mice, Transgenic ; Motivation ; negative reinforcement ; Neurons - physiology ; Optogenetics ; OVLT ; paraventricular hypothalamus ; paraventricular thalamus ; Pituitary Adenylate Cyclase-Activating Polypeptide - genetics ; Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism ; Preoptic Area - physiology ; Prosencephalon - cytology ; Prosencephalon - physiology ; Receptor, Angiotensin, Type 1 - genetics ; Receptor, Angiotensin, Type 1 - metabolism ; Reinforcement (Psychology) ; subfornical organ ; Subfornical Organ - physiology ; thirst ; Thirst - physiology ; valence ; Water</subject><ispartof>Neuron (Cambridge, Mass.), 2017-12, Vol.96 (6), p.1272-1281.e4</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-4914b2370e6213d6c0f267c0d370b6961966ec5f34e763a4bf07b6a8b3cd0aa03</citedby><cites>FETCH-LOGICAL-c557t-4914b2370e6213d6c0f267c0d370b6961966ec5f34e763a4bf07b6a8b3cd0aa03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2017.11.041$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29268095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leib, David E.</creatorcontrib><creatorcontrib>Zimmerman, Christopher A.</creatorcontrib><creatorcontrib>Poormoghaddam, Ailar</creatorcontrib><creatorcontrib>Huey, Erica L.</creatorcontrib><creatorcontrib>Ahn, Jamie S.</creatorcontrib><creatorcontrib>Lin, Yen-Chu</creatorcontrib><creatorcontrib>Tan, Chan Lek</creatorcontrib><creatorcontrib>Chen, Yiming</creatorcontrib><creatorcontrib>Knight, Zachary A.</creatorcontrib><title>The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vasculosum of the lamina terminalis (OVLT) and median preoptic nucleus (MnPO). We then identify molecularly defined cell types within the OVLT and MnPO that are activated by fluid imbalance and show that stimulation of these neurons is sufficient to drive drinking, cardiovascular responses, and negative reinforcement. Finally, we demonstrate that the thirst signal exits these regions through at least three parallel pathways and show that these projections dissociate the cardiovascular and behavioral responses to fluid imbalance. These findings reveal a distributed thirst circuit that motivates drinking by the common mechanism of drive reduction.
•The genes Agtr1a and Adcyap1 label thirst neurons in the OVLT and MnPO, respectively•SFO, OVLT, and MnPO thirst neurons control both drinking and blood pressure•Stimulation of thirst neurons in SFO, OVLT, and MnPO is negatively reinforcing•MnPO projections dissociate the cardiovascular and behavioral outputs of the LT
Leib et al. reveal the motivational mechanism by which the thirst circuit drives drinking. They show that molecularly defined cell types in three forebrain nuclei promote drinking by drive reduction and also coordinate the cardiovascular response to fluid imbalance.</description><subject>angiotensin</subject><subject>Animals</subject><subject>Behavior</subject><subject>Behavior modification</subject><subject>Brain</subject><subject>Channelrhodopsins - genetics</subject><subject>Channelrhodopsins - metabolism</subject><subject>circuit</subject><subject>drinking behavior</subject><subject>Drinking Behavior - physiology</subject><subject>drive reduction</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>homeostasis</subject><subject>hypothalamus</subject><subject>lamina terminalis</subject><subject>lateral hypothalamus</subject><subject>median preoptic nucleus</subject><subject>Mice, Transgenic</subject><subject>Motivation</subject><subject>negative reinforcement</subject><subject>Neurons - physiology</subject><subject>Optogenetics</subject><subject>OVLT</subject><subject>paraventricular hypothalamus</subject><subject>paraventricular thalamus</subject><subject>Pituitary Adenylate Cyclase-Activating Polypeptide - genetics</subject><subject>Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism</subject><subject>Preoptic Area - physiology</subject><subject>Prosencephalon - cytology</subject><subject>Prosencephalon - physiology</subject><subject>Receptor, Angiotensin, Type 1 - genetics</subject><subject>Receptor, Angiotensin, Type 1 - metabolism</subject><subject>Reinforcement (Psychology)</subject><subject>subfornical organ</subject><subject>Subfornical Organ - physiology</subject><subject>thirst</subject><subject>Thirst - physiology</subject><subject>valence</subject><subject>Water</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFvEzEQhS0EoqHlHyC0EpdedvGsvXZ8QUIpgapVkVB6trze2axDYhd7N1L_PY5SCuXQ00ieb97M8yPkHdAKKIiPm8rjFIOvagqyAqgohxdkBlTJkoNSL8mMzpUoRS3ZCXmT0oZS4I2C1-SkVrWYU9XMyNVqwGIZIrbROF-sBhfTWCxctJMbi4vo9pgOxf90fl2MQwzTeihucG3G3Cp-oPN9iBZ36Mcz8qo324RvH-opuV1-WS2-ldffv14uPl-XtmnkWHIFvK2ZpChqYJ2wtK-FtLTLT61QApQQaJuecZSCGd72VLbCzFtmO2oMZafk01H3bmp32Nm8OpqtvotuZ-K9Dsbppx3vBr0Oe90oThlrssD5g0AMvyZMo965ZHG7NR7DlDQoqZRo8ikZ_fAfuglT9NlepuaMc8U4yxQ_UjaGlCL2j8cA1Ye09EYf09KHtDSAzmnlsff_Gnkc-hPPX6eYv3PvMOpkHXqLnYtoR90F9_yG3_yzqHM</recordid><startdate>20171220</startdate><enddate>20171220</enddate><creator>Leib, David E.</creator><creator>Zimmerman, Christopher A.</creator><creator>Poormoghaddam, Ailar</creator><creator>Huey, Erica L.</creator><creator>Ahn, Jamie S.</creator><creator>Lin, Yen-Chu</creator><creator>Tan, Chan Lek</creator><creator>Chen, Yiming</creator><creator>Knight, Zachary A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171220</creationdate><title>The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement</title><author>Leib, David E. ; Zimmerman, Christopher A. ; Poormoghaddam, Ailar ; Huey, Erica L. ; Ahn, Jamie S. ; Lin, Yen-Chu ; Tan, Chan Lek ; Chen, Yiming ; Knight, Zachary A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-4914b2370e6213d6c0f267c0d370b6961966ec5f34e763a4bf07b6a8b3cd0aa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>angiotensin</topic><topic>Animals</topic><topic>Behavior</topic><topic>Behavior modification</topic><topic>Brain</topic><topic>Channelrhodopsins - genetics</topic><topic>Channelrhodopsins - metabolism</topic><topic>circuit</topic><topic>drinking behavior</topic><topic>Drinking Behavior - physiology</topic><topic>drive reduction</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>homeostasis</topic><topic>hypothalamus</topic><topic>lamina terminalis</topic><topic>lateral hypothalamus</topic><topic>median preoptic nucleus</topic><topic>Mice, Transgenic</topic><topic>Motivation</topic><topic>negative reinforcement</topic><topic>Neurons - physiology</topic><topic>Optogenetics</topic><topic>OVLT</topic><topic>paraventricular hypothalamus</topic><topic>paraventricular thalamus</topic><topic>Pituitary Adenylate Cyclase-Activating Polypeptide - genetics</topic><topic>Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism</topic><topic>Preoptic Area - physiology</topic><topic>Prosencephalon - cytology</topic><topic>Prosencephalon - physiology</topic><topic>Receptor, Angiotensin, Type 1 - genetics</topic><topic>Receptor, Angiotensin, Type 1 - metabolism</topic><topic>Reinforcement (Psychology)</topic><topic>subfornical organ</topic><topic>Subfornical Organ - physiology</topic><topic>thirst</topic><topic>Thirst - physiology</topic><topic>valence</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leib, David E.</creatorcontrib><creatorcontrib>Zimmerman, Christopher A.</creatorcontrib><creatorcontrib>Poormoghaddam, Ailar</creatorcontrib><creatorcontrib>Huey, Erica L.</creatorcontrib><creatorcontrib>Ahn, Jamie S.</creatorcontrib><creatorcontrib>Lin, Yen-Chu</creatorcontrib><creatorcontrib>Tan, Chan Lek</creatorcontrib><creatorcontrib>Chen, Yiming</creatorcontrib><creatorcontrib>Knight, Zachary A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leib, David E.</au><au>Zimmerman, Christopher A.</au><au>Poormoghaddam, Ailar</au><au>Huey, Erica L.</au><au>Ahn, Jamie S.</au><au>Lin, Yen-Chu</au><au>Tan, Chan Lek</au><au>Chen, Yiming</au><au>Knight, Zachary A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2017-12-20</date><risdate>2017</risdate><volume>96</volume><issue>6</issue><spage>1272</spage><epage>1281.e4</epage><pages>1272-1281.e4</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vasculosum of the lamina terminalis (OVLT) and median preoptic nucleus (MnPO). We then identify molecularly defined cell types within the OVLT and MnPO that are activated by fluid imbalance and show that stimulation of these neurons is sufficient to drive drinking, cardiovascular responses, and negative reinforcement. Finally, we demonstrate that the thirst signal exits these regions through at least three parallel pathways and show that these projections dissociate the cardiovascular and behavioral responses to fluid imbalance. These findings reveal a distributed thirst circuit that motivates drinking by the common mechanism of drive reduction.
•The genes Agtr1a and Adcyap1 label thirst neurons in the OVLT and MnPO, respectively•SFO, OVLT, and MnPO thirst neurons control both drinking and blood pressure•Stimulation of thirst neurons in SFO, OVLT, and MnPO is negatively reinforcing•MnPO projections dissociate the cardiovascular and behavioral outputs of the LT
Leib et al. reveal the motivational mechanism by which the thirst circuit drives drinking. They show that molecularly defined cell types in three forebrain nuclei promote drinking by drive reduction and also coordinate the cardiovascular response to fluid imbalance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29268095</pmid><doi>10.1016/j.neuron.2017.11.041</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2017-12, Vol.96 (6), p.1272-1281.e4 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5940335 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | angiotensin Animals Behavior Behavior modification Brain Channelrhodopsins - genetics Channelrhodopsins - metabolism circuit drinking behavior Drinking Behavior - physiology drive reduction Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism homeostasis hypothalamus lamina terminalis lateral hypothalamus median preoptic nucleus Mice, Transgenic Motivation negative reinforcement Neurons - physiology Optogenetics OVLT paraventricular hypothalamus paraventricular thalamus Pituitary Adenylate Cyclase-Activating Polypeptide - genetics Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism Preoptic Area - physiology Prosencephalon - cytology Prosencephalon - physiology Receptor, Angiotensin, Type 1 - genetics Receptor, Angiotensin, Type 1 - metabolism Reinforcement (Psychology) subfornical organ Subfornical Organ - physiology thirst Thirst - physiology valence Water |
title | The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Forebrain%20Thirst%20Circuit%20Drives%20Drinking%20through%20Negative%20Reinforcement&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Leib,%20David%20E.&rft.date=2017-12-20&rft.volume=96&rft.issue=6&rft.spage=1272&rft.epage=1281.e4&rft.pages=1272-1281.e4&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.11.041&rft_dat=%3Cproquest_pubme%3E1983449343%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983449343&rft_id=info:pmid/29268095&rft_els_id=S0896627317311224&rfr_iscdi=true |