The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement

The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2017-12, Vol.96 (6), p.1272-1281.e4
Hauptverfasser: Leib, David E., Zimmerman, Christopher A., Poormoghaddam, Ailar, Huey, Erica L., Ahn, Jamie S., Lin, Yen-Chu, Tan, Chan Lek, Chen, Yiming, Knight, Zachary A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1281.e4
container_issue 6
container_start_page 1272
container_title Neuron (Cambridge, Mass.)
container_volume 96
creator Leib, David E.
Zimmerman, Christopher A.
Poormoghaddam, Ailar
Huey, Erica L.
Ahn, Jamie S.
Lin, Yen-Chu
Tan, Chan Lek
Chen, Yiming
Knight, Zachary A.
description The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vasculosum of the lamina terminalis (OVLT) and median preoptic nucleus (MnPO). We then identify molecularly defined cell types within the OVLT and MnPO that are activated by fluid imbalance and show that stimulation of these neurons is sufficient to drive drinking, cardiovascular responses, and negative reinforcement. Finally, we demonstrate that the thirst signal exits these regions through at least three parallel pathways and show that these projections dissociate the cardiovascular and behavioral responses to fluid imbalance. These findings reveal a distributed thirst circuit that motivates drinking by the common mechanism of drive reduction. •The genes Agtr1a and Adcyap1 label thirst neurons in the OVLT and MnPO, respectively•SFO, OVLT, and MnPO thirst neurons control both drinking and blood pressure•Stimulation of thirst neurons in SFO, OVLT, and MnPO is negatively reinforcing•MnPO projections dissociate the cardiovascular and behavioral outputs of the LT Leib et al. reveal the motivational mechanism by which the thirst circuit drives drinking. They show that molecularly defined cell types in three forebrain nuclei promote drinking by drive reduction and also coordinate the cardiovascular response to fluid imbalance.
doi_str_mv 10.1016/j.neuron.2017.11.041
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5940335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627317311224</els_id><sourcerecordid>1983449343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-4914b2370e6213d6c0f267c0d370b6961966ec5f34e763a4bf07b6a8b3cd0aa03</originalsourceid><addsrcrecordid>eNp9kUFvEzEQhS0EoqHlHyC0EpdedvGsvXZ8QUIpgapVkVB6trze2axDYhd7N1L_PY5SCuXQ00ieb97M8yPkHdAKKIiPm8rjFIOvagqyAqgohxdkBlTJkoNSL8mMzpUoRS3ZCXmT0oZS4I2C1-SkVrWYU9XMyNVqwGIZIrbROF-sBhfTWCxctJMbi4vo9pgOxf90fl2MQwzTeihucG3G3Cp-oPN9iBZ36Mcz8qo324RvH-opuV1-WS2-ldffv14uPl-XtmnkWHIFvK2ZpChqYJ2wtK-FtLTLT61QApQQaJuecZSCGd72VLbCzFtmO2oMZafk01H3bmp32Nm8OpqtvotuZ-K9Dsbppx3vBr0Oe90oThlrssD5g0AMvyZMo965ZHG7NR7DlDQoqZRo8ikZ_fAfuglT9NlepuaMc8U4yxQ_UjaGlCL2j8cA1Ye09EYf09KHtDSAzmnlsff_Gnkc-hPPX6eYv3PvMOpkHXqLnYtoR90F9_yG3_yzqHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983449343</pqid></control><display><type>article</type><title>The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Leib, David E. ; Zimmerman, Christopher A. ; Poormoghaddam, Ailar ; Huey, Erica L. ; Ahn, Jamie S. ; Lin, Yen-Chu ; Tan, Chan Lek ; Chen, Yiming ; Knight, Zachary A.</creator><creatorcontrib>Leib, David E. ; Zimmerman, Christopher A. ; Poormoghaddam, Ailar ; Huey, Erica L. ; Ahn, Jamie S. ; Lin, Yen-Chu ; Tan, Chan Lek ; Chen, Yiming ; Knight, Zachary A.</creatorcontrib><description>The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vasculosum of the lamina terminalis (OVLT) and median preoptic nucleus (MnPO). We then identify molecularly defined cell types within the OVLT and MnPO that are activated by fluid imbalance and show that stimulation of these neurons is sufficient to drive drinking, cardiovascular responses, and negative reinforcement. Finally, we demonstrate that the thirst signal exits these regions through at least three parallel pathways and show that these projections dissociate the cardiovascular and behavioral responses to fluid imbalance. These findings reveal a distributed thirst circuit that motivates drinking by the common mechanism of drive reduction. •The genes Agtr1a and Adcyap1 label thirst neurons in the OVLT and MnPO, respectively•SFO, OVLT, and MnPO thirst neurons control both drinking and blood pressure•Stimulation of thirst neurons in SFO, OVLT, and MnPO is negatively reinforcing•MnPO projections dissociate the cardiovascular and behavioral outputs of the LT Leib et al. reveal the motivational mechanism by which the thirst circuit drives drinking. They show that molecularly defined cell types in three forebrain nuclei promote drinking by drive reduction and also coordinate the cardiovascular response to fluid imbalance.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.11.041</identifier><identifier>PMID: 29268095</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>angiotensin ; Animals ; Behavior ; Behavior modification ; Brain ; Channelrhodopsins - genetics ; Channelrhodopsins - metabolism ; circuit ; drinking behavior ; Drinking Behavior - physiology ; drive reduction ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; homeostasis ; hypothalamus ; lamina terminalis ; lateral hypothalamus ; median preoptic nucleus ; Mice, Transgenic ; Motivation ; negative reinforcement ; Neurons - physiology ; Optogenetics ; OVLT ; paraventricular hypothalamus ; paraventricular thalamus ; Pituitary Adenylate Cyclase-Activating Polypeptide - genetics ; Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism ; Preoptic Area - physiology ; Prosencephalon - cytology ; Prosencephalon - physiology ; Receptor, Angiotensin, Type 1 - genetics ; Receptor, Angiotensin, Type 1 - metabolism ; Reinforcement (Psychology) ; subfornical organ ; Subfornical Organ - physiology ; thirst ; Thirst - physiology ; valence ; Water</subject><ispartof>Neuron (Cambridge, Mass.), 2017-12, Vol.96 (6), p.1272-1281.e4</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-4914b2370e6213d6c0f267c0d370b6961966ec5f34e763a4bf07b6a8b3cd0aa03</citedby><cites>FETCH-LOGICAL-c557t-4914b2370e6213d6c0f267c0d370b6961966ec5f34e763a4bf07b6a8b3cd0aa03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2017.11.041$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29268095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leib, David E.</creatorcontrib><creatorcontrib>Zimmerman, Christopher A.</creatorcontrib><creatorcontrib>Poormoghaddam, Ailar</creatorcontrib><creatorcontrib>Huey, Erica L.</creatorcontrib><creatorcontrib>Ahn, Jamie S.</creatorcontrib><creatorcontrib>Lin, Yen-Chu</creatorcontrib><creatorcontrib>Tan, Chan Lek</creatorcontrib><creatorcontrib>Chen, Yiming</creatorcontrib><creatorcontrib>Knight, Zachary A.</creatorcontrib><title>The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vasculosum of the lamina terminalis (OVLT) and median preoptic nucleus (MnPO). We then identify molecularly defined cell types within the OVLT and MnPO that are activated by fluid imbalance and show that stimulation of these neurons is sufficient to drive drinking, cardiovascular responses, and negative reinforcement. Finally, we demonstrate that the thirst signal exits these regions through at least three parallel pathways and show that these projections dissociate the cardiovascular and behavioral responses to fluid imbalance. These findings reveal a distributed thirst circuit that motivates drinking by the common mechanism of drive reduction. •The genes Agtr1a and Adcyap1 label thirst neurons in the OVLT and MnPO, respectively•SFO, OVLT, and MnPO thirst neurons control both drinking and blood pressure•Stimulation of thirst neurons in SFO, OVLT, and MnPO is negatively reinforcing•MnPO projections dissociate the cardiovascular and behavioral outputs of the LT Leib et al. reveal the motivational mechanism by which the thirst circuit drives drinking. They show that molecularly defined cell types in three forebrain nuclei promote drinking by drive reduction and also coordinate the cardiovascular response to fluid imbalance.</description><subject>angiotensin</subject><subject>Animals</subject><subject>Behavior</subject><subject>Behavior modification</subject><subject>Brain</subject><subject>Channelrhodopsins - genetics</subject><subject>Channelrhodopsins - metabolism</subject><subject>circuit</subject><subject>drinking behavior</subject><subject>Drinking Behavior - physiology</subject><subject>drive reduction</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>homeostasis</subject><subject>hypothalamus</subject><subject>lamina terminalis</subject><subject>lateral hypothalamus</subject><subject>median preoptic nucleus</subject><subject>Mice, Transgenic</subject><subject>Motivation</subject><subject>negative reinforcement</subject><subject>Neurons - physiology</subject><subject>Optogenetics</subject><subject>OVLT</subject><subject>paraventricular hypothalamus</subject><subject>paraventricular thalamus</subject><subject>Pituitary Adenylate Cyclase-Activating Polypeptide - genetics</subject><subject>Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism</subject><subject>Preoptic Area - physiology</subject><subject>Prosencephalon - cytology</subject><subject>Prosencephalon - physiology</subject><subject>Receptor, Angiotensin, Type 1 - genetics</subject><subject>Receptor, Angiotensin, Type 1 - metabolism</subject><subject>Reinforcement (Psychology)</subject><subject>subfornical organ</subject><subject>Subfornical Organ - physiology</subject><subject>thirst</subject><subject>Thirst - physiology</subject><subject>valence</subject><subject>Water</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFvEzEQhS0EoqHlHyC0EpdedvGsvXZ8QUIpgapVkVB6trze2axDYhd7N1L_PY5SCuXQ00ieb97M8yPkHdAKKIiPm8rjFIOvagqyAqgohxdkBlTJkoNSL8mMzpUoRS3ZCXmT0oZS4I2C1-SkVrWYU9XMyNVqwGIZIrbROF-sBhfTWCxctJMbi4vo9pgOxf90fl2MQwzTeihucG3G3Cp-oPN9iBZ36Mcz8qo324RvH-opuV1-WS2-ldffv14uPl-XtmnkWHIFvK2ZpChqYJ2wtK-FtLTLT61QApQQaJuecZSCGd72VLbCzFtmO2oMZafk01H3bmp32Nm8OpqtvotuZ-K9Dsbppx3vBr0Oe90oThlrssD5g0AMvyZMo965ZHG7NR7DlDQoqZRo8ikZ_fAfuglT9NlepuaMc8U4yxQ_UjaGlCL2j8cA1Ye09EYf09KHtDSAzmnlsff_Gnkc-hPPX6eYv3PvMOpkHXqLnYtoR90F9_yG3_yzqHM</recordid><startdate>20171220</startdate><enddate>20171220</enddate><creator>Leib, David E.</creator><creator>Zimmerman, Christopher A.</creator><creator>Poormoghaddam, Ailar</creator><creator>Huey, Erica L.</creator><creator>Ahn, Jamie S.</creator><creator>Lin, Yen-Chu</creator><creator>Tan, Chan Lek</creator><creator>Chen, Yiming</creator><creator>Knight, Zachary A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171220</creationdate><title>The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement</title><author>Leib, David E. ; Zimmerman, Christopher A. ; Poormoghaddam, Ailar ; Huey, Erica L. ; Ahn, Jamie S. ; Lin, Yen-Chu ; Tan, Chan Lek ; Chen, Yiming ; Knight, Zachary A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-4914b2370e6213d6c0f267c0d370b6961966ec5f34e763a4bf07b6a8b3cd0aa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>angiotensin</topic><topic>Animals</topic><topic>Behavior</topic><topic>Behavior modification</topic><topic>Brain</topic><topic>Channelrhodopsins - genetics</topic><topic>Channelrhodopsins - metabolism</topic><topic>circuit</topic><topic>drinking behavior</topic><topic>Drinking Behavior - physiology</topic><topic>drive reduction</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>homeostasis</topic><topic>hypothalamus</topic><topic>lamina terminalis</topic><topic>lateral hypothalamus</topic><topic>median preoptic nucleus</topic><topic>Mice, Transgenic</topic><topic>Motivation</topic><topic>negative reinforcement</topic><topic>Neurons - physiology</topic><topic>Optogenetics</topic><topic>OVLT</topic><topic>paraventricular hypothalamus</topic><topic>paraventricular thalamus</topic><topic>Pituitary Adenylate Cyclase-Activating Polypeptide - genetics</topic><topic>Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism</topic><topic>Preoptic Area - physiology</topic><topic>Prosencephalon - cytology</topic><topic>Prosencephalon - physiology</topic><topic>Receptor, Angiotensin, Type 1 - genetics</topic><topic>Receptor, Angiotensin, Type 1 - metabolism</topic><topic>Reinforcement (Psychology)</topic><topic>subfornical organ</topic><topic>Subfornical Organ - physiology</topic><topic>thirst</topic><topic>Thirst - physiology</topic><topic>valence</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leib, David E.</creatorcontrib><creatorcontrib>Zimmerman, Christopher A.</creatorcontrib><creatorcontrib>Poormoghaddam, Ailar</creatorcontrib><creatorcontrib>Huey, Erica L.</creatorcontrib><creatorcontrib>Ahn, Jamie S.</creatorcontrib><creatorcontrib>Lin, Yen-Chu</creatorcontrib><creatorcontrib>Tan, Chan Lek</creatorcontrib><creatorcontrib>Chen, Yiming</creatorcontrib><creatorcontrib>Knight, Zachary A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leib, David E.</au><au>Zimmerman, Christopher A.</au><au>Poormoghaddam, Ailar</au><au>Huey, Erica L.</au><au>Ahn, Jamie S.</au><au>Lin, Yen-Chu</au><au>Tan, Chan Lek</au><au>Chen, Yiming</au><au>Knight, Zachary A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2017-12-20</date><risdate>2017</risdate><volume>96</volume><issue>6</issue><spage>1272</spage><epage>1281.e4</epage><pages>1272-1281.e4</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vasculosum of the lamina terminalis (OVLT) and median preoptic nucleus (MnPO). We then identify molecularly defined cell types within the OVLT and MnPO that are activated by fluid imbalance and show that stimulation of these neurons is sufficient to drive drinking, cardiovascular responses, and negative reinforcement. Finally, we demonstrate that the thirst signal exits these regions through at least three parallel pathways and show that these projections dissociate the cardiovascular and behavioral responses to fluid imbalance. These findings reveal a distributed thirst circuit that motivates drinking by the common mechanism of drive reduction. •The genes Agtr1a and Adcyap1 label thirst neurons in the OVLT and MnPO, respectively•SFO, OVLT, and MnPO thirst neurons control both drinking and blood pressure•Stimulation of thirst neurons in SFO, OVLT, and MnPO is negatively reinforcing•MnPO projections dissociate the cardiovascular and behavioral outputs of the LT Leib et al. reveal the motivational mechanism by which the thirst circuit drives drinking. They show that molecularly defined cell types in three forebrain nuclei promote drinking by drive reduction and also coordinate the cardiovascular response to fluid imbalance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29268095</pmid><doi>10.1016/j.neuron.2017.11.041</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2017-12, Vol.96 (6), p.1272-1281.e4
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5940335
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects angiotensin
Animals
Behavior
Behavior modification
Brain
Channelrhodopsins - genetics
Channelrhodopsins - metabolism
circuit
drinking behavior
Drinking Behavior - physiology
drive reduction
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
homeostasis
hypothalamus
lamina terminalis
lateral hypothalamus
median preoptic nucleus
Mice, Transgenic
Motivation
negative reinforcement
Neurons - physiology
Optogenetics
OVLT
paraventricular hypothalamus
paraventricular thalamus
Pituitary Adenylate Cyclase-Activating Polypeptide - genetics
Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism
Preoptic Area - physiology
Prosencephalon - cytology
Prosencephalon - physiology
Receptor, Angiotensin, Type 1 - genetics
Receptor, Angiotensin, Type 1 - metabolism
Reinforcement (Psychology)
subfornical organ
Subfornical Organ - physiology
thirst
Thirst - physiology
valence
Water
title The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Forebrain%20Thirst%20Circuit%20Drives%20Drinking%20through%20Negative%20Reinforcement&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Leib,%20David%20E.&rft.date=2017-12-20&rft.volume=96&rft.issue=6&rft.spage=1272&rft.epage=1281.e4&rft.pages=1272-1281.e4&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.11.041&rft_dat=%3Cproquest_pubme%3E1983449343%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983449343&rft_id=info:pmid/29268095&rft_els_id=S0896627317311224&rfr_iscdi=true