Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system
•The performance of Stirling engine integrated to a micro-combustor in the NMT system was investigated.•Energy recovery and power generation of 27 Wh/h from combustion of human faeces.•The integrated position of the Stirling engine to the micro-combustor is highly paramount.•Sensitivity of the perfo...
Gespeichert in:
Veröffentlicht in: | Energy conversion and management 2018-06, Vol.165, p.528-540 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 540 |
---|---|
container_issue | |
container_start_page | 528 |
container_title | Energy conversion and management |
container_volume | 165 |
creator | Sowale, Ayodeji Kolios, Athanasios J. Fidalgo, Beatriz Somorin, Tosin Parker, Alison Williams, Leon Collins, Matt McAdam, Ewan Tyrrel, Sean |
description | •The performance of Stirling engine integrated to a micro-combustor in the NMT system was investigated.•Energy recovery and power generation of 27 Wh/h from combustion of human faeces.•The integrated position of the Stirling engine to the micro-combustor is highly paramount.•Sensitivity of the performance of the Stirling engine to working gas temperature.•Requirements for optimum performance of the Stirling engine for integration with micro-combustor.
The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz. |
doi_str_mv | 10.1016/j.enconman.2018.03.085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5938799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890418303145</els_id><sourcerecordid>2116909384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-1da9202bdba5e8c4d43cef69e2bb2394de37d8ae8f25c8c470e1a6fe7b9719a73</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhL1SWuHBJ8EdixxcEqoBWqsSh5Ww5ziT1KrYXO7tS_n292rYCLj1Z1jzzejwPQheU1JRQ8XlbQ7AxeBNqRmhXE16Trn2FNrSTqmKMyddoQ6gSVadIc4be5bwlhPCWiLfojKlO0JaRDbq9u4fk47AG453FJph5zS7jOGKDJ-O9wcu6A3y7uDS7MGEIkwuAXShsuUCaVpzAxgOkFec1L-DfozejmTN8eDzP0e8f3-8ur6qbXz-vL7_dVLaVdKnoYBQjrB9600Jnm6HhFkahgPU946oZgMuhM9CNrLWlLglQI0aQvZJUGcnP0ZdT7m7fexgshCWZWe-S8yatOhqn_60Ed6-neNCt4mVLqgR8egxI8c8e8qK9yxbm2QSI-6wZpUKRAjcvo6RRqiGs5QX9-B-6jftUFnukpOBC0oYVSpwom2LOCcbnuSnRR8V6q58U66NiTbguikvjxd-_fm57clqArycAyu4PDpLO1pUoGFwRteghupfeeABKEbzL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076367142</pqid></control><display><type>article</type><title>Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system</title><source>Elsevier ScienceDirect Journals</source><creator>Sowale, Ayodeji ; Kolios, Athanasios J. ; Fidalgo, Beatriz ; Somorin, Tosin ; Parker, Alison ; Williams, Leon ; Collins, Matt ; McAdam, Ewan ; Tyrrel, Sean</creator><creatorcontrib>Sowale, Ayodeji ; Kolios, Athanasios J. ; Fidalgo, Beatriz ; Somorin, Tosin ; Parker, Alison ; Williams, Leon ; Collins, Matt ; McAdam, Ewan ; Tyrrel, Sean</creatorcontrib><description>•The performance of Stirling engine integrated to a micro-combustor in the NMT system was investigated.•Energy recovery and power generation of 27 Wh/h from combustion of human faeces.•The integrated position of the Stirling engine to the micro-combustor is highly paramount.•Sensitivity of the performance of the Stirling engine to working gas temperature.•Requirements for optimum performance of the Stirling engine for integration with micro-combustor.
The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2018.03.085</identifier><identifier>PMID: 29861520</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Combustion chambers ; Conduction ; Conduction heating ; Electricity generation ; energy ; Energy recovery ; Energy recovery systems ; feces ; Flue gas ; heat ; Human wastes ; humans ; Hygiene ; Mathematical models ; Micro CHP ; Nano Membrane Toilet ; Sanitation ; Sanitation systems ; Steady state models ; Stirling engine ; System effectiveness ; temperature ; Thermodynamics ; Urine ; Waste disposal</subject><ispartof>Energy conversion and management, 2018-06, Vol.165, p.528-540</ispartof><rights>2018 The Author(s)</rights><rights>Copyright Elsevier Science Ltd. Jun 1, 2018</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-1da9202bdba5e8c4d43cef69e2bb2394de37d8ae8f25c8c470e1a6fe7b9719a73</citedby><cites>FETCH-LOGICAL-c571t-1da9202bdba5e8c4d43cef69e2bb2394de37d8ae8f25c8c470e1a6fe7b9719a73</cites><orcidid>0000-0001-5466-5970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890418303145$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29861520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sowale, Ayodeji</creatorcontrib><creatorcontrib>Kolios, Athanasios J.</creatorcontrib><creatorcontrib>Fidalgo, Beatriz</creatorcontrib><creatorcontrib>Somorin, Tosin</creatorcontrib><creatorcontrib>Parker, Alison</creatorcontrib><creatorcontrib>Williams, Leon</creatorcontrib><creatorcontrib>Collins, Matt</creatorcontrib><creatorcontrib>McAdam, Ewan</creatorcontrib><creatorcontrib>Tyrrel, Sean</creatorcontrib><title>Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system</title><title>Energy conversion and management</title><addtitle>Energy Convers Manag</addtitle><description>•The performance of Stirling engine integrated to a micro-combustor in the NMT system was investigated.•Energy recovery and power generation of 27 Wh/h from combustion of human faeces.•The integrated position of the Stirling engine to the micro-combustor is highly paramount.•Sensitivity of the performance of the Stirling engine to working gas temperature.•Requirements for optimum performance of the Stirling engine for integration with micro-combustor.
The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz.</description><subject>Combustion chambers</subject><subject>Conduction</subject><subject>Conduction heating</subject><subject>Electricity generation</subject><subject>energy</subject><subject>Energy recovery</subject><subject>Energy recovery systems</subject><subject>feces</subject><subject>Flue gas</subject><subject>heat</subject><subject>Human wastes</subject><subject>humans</subject><subject>Hygiene</subject><subject>Mathematical models</subject><subject>Micro CHP</subject><subject>Nano Membrane Toilet</subject><subject>Sanitation</subject><subject>Sanitation systems</subject><subject>Steady state models</subject><subject>Stirling engine</subject><subject>System effectiveness</subject><subject>temperature</subject><subject>Thermodynamics</subject><subject>Urine</subject><subject>Waste disposal</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EokvhL1SWuHBJ8EdixxcEqoBWqsSh5Ww5ziT1KrYXO7tS_n292rYCLj1Z1jzzejwPQheU1JRQ8XlbQ7AxeBNqRmhXE16Trn2FNrSTqmKMyddoQ6gSVadIc4be5bwlhPCWiLfojKlO0JaRDbq9u4fk47AG453FJph5zS7jOGKDJ-O9wcu6A3y7uDS7MGEIkwuAXShsuUCaVpzAxgOkFec1L-DfozejmTN8eDzP0e8f3-8ur6qbXz-vL7_dVLaVdKnoYBQjrB9600Jnm6HhFkahgPU946oZgMuhM9CNrLWlLglQI0aQvZJUGcnP0ZdT7m7fexgshCWZWe-S8yatOhqn_60Ed6-neNCt4mVLqgR8egxI8c8e8qK9yxbm2QSI-6wZpUKRAjcvo6RRqiGs5QX9-B-6jftUFnukpOBC0oYVSpwom2LOCcbnuSnRR8V6q58U66NiTbguikvjxd-_fm57clqArycAyu4PDpLO1pUoGFwRteghupfeeABKEbzL</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Sowale, Ayodeji</creator><creator>Kolios, Athanasios J.</creator><creator>Fidalgo, Beatriz</creator><creator>Somorin, Tosin</creator><creator>Parker, Alison</creator><creator>Williams, Leon</creator><creator>Collins, Matt</creator><creator>McAdam, Ewan</creator><creator>Tyrrel, Sean</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5466-5970</orcidid></search><sort><creationdate>20180601</creationdate><title>Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system</title><author>Sowale, Ayodeji ; Kolios, Athanasios J. ; Fidalgo, Beatriz ; Somorin, Tosin ; Parker, Alison ; Williams, Leon ; Collins, Matt ; McAdam, Ewan ; Tyrrel, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-1da9202bdba5e8c4d43cef69e2bb2394de37d8ae8f25c8c470e1a6fe7b9719a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Combustion chambers</topic><topic>Conduction</topic><topic>Conduction heating</topic><topic>Electricity generation</topic><topic>energy</topic><topic>Energy recovery</topic><topic>Energy recovery systems</topic><topic>feces</topic><topic>Flue gas</topic><topic>heat</topic><topic>Human wastes</topic><topic>humans</topic><topic>Hygiene</topic><topic>Mathematical models</topic><topic>Micro CHP</topic><topic>Nano Membrane Toilet</topic><topic>Sanitation</topic><topic>Sanitation systems</topic><topic>Steady state models</topic><topic>Stirling engine</topic><topic>System effectiveness</topic><topic>temperature</topic><topic>Thermodynamics</topic><topic>Urine</topic><topic>Waste disposal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sowale, Ayodeji</creatorcontrib><creatorcontrib>Kolios, Athanasios J.</creatorcontrib><creatorcontrib>Fidalgo, Beatriz</creatorcontrib><creatorcontrib>Somorin, Tosin</creatorcontrib><creatorcontrib>Parker, Alison</creatorcontrib><creatorcontrib>Williams, Leon</creatorcontrib><creatorcontrib>Collins, Matt</creatorcontrib><creatorcontrib>McAdam, Ewan</creatorcontrib><creatorcontrib>Tyrrel, Sean</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sowale, Ayodeji</au><au>Kolios, Athanasios J.</au><au>Fidalgo, Beatriz</au><au>Somorin, Tosin</au><au>Parker, Alison</au><au>Williams, Leon</au><au>Collins, Matt</au><au>McAdam, Ewan</au><au>Tyrrel, Sean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system</atitle><jtitle>Energy conversion and management</jtitle><addtitle>Energy Convers Manag</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>165</volume><spage>528</spage><epage>540</epage><pages>528-540</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•The performance of Stirling engine integrated to a micro-combustor in the NMT system was investigated.•Energy recovery and power generation of 27 Wh/h from combustion of human faeces.•The integrated position of the Stirling engine to the micro-combustor is highly paramount.•Sensitivity of the performance of the Stirling engine to working gas temperature.•Requirements for optimum performance of the Stirling engine for integration with micro-combustor.
The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>29861520</pmid><doi>10.1016/j.enconman.2018.03.085</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5466-5970</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2018-06, Vol.165, p.528-540 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5938799 |
source | Elsevier ScienceDirect Journals |
subjects | Combustion chambers Conduction Conduction heating Electricity generation energy Energy recovery Energy recovery systems feces Flue gas heat Human wastes humans Hygiene Mathematical models Micro CHP Nano Membrane Toilet Sanitation Sanitation systems Steady state models Stirling engine System effectiveness temperature Thermodynamics Urine Waste disposal |
title | Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20analysis%20of%20a%20gamma%20type%20Stirling%20engine%20in%20an%20energy%20recovery%20system&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Sowale,%20Ayodeji&rft.date=2018-06-01&rft.volume=165&rft.spage=528&rft.epage=540&rft.pages=528-540&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2018.03.085&rft_dat=%3Cproquest_pubme%3E2116909384%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076367142&rft_id=info:pmid/29861520&rft_els_id=S0196890418303145&rfr_iscdi=true |