Cortical travelling waves: mechanisms and computational principles

Advanced recording techniques have enabled the identification of travelling waves of neuronal activity in different areas of the cortex. Sejnowski and colleagues review these findings, consider the mechanisms by which travelling waves are generated and evaluate their possible roles in cortical funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Neuroscience 2018-05, Vol.19 (5), p.255-268
Hauptverfasser: Muller, Lyle, Chavane, Frédéric, Reynolds, John, Sejnowski, Terrence J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 5
container_start_page 255
container_title Nature reviews. Neuroscience
container_volume 19
creator Muller, Lyle
Chavane, Frédéric
Reynolds, John
Sejnowski, Terrence J.
description Advanced recording techniques have enabled the identification of travelling waves of neuronal activity in different areas of the cortex. Sejnowski and colleagues review these findings, consider the mechanisms by which travelling waves are generated and evaluate their possible roles in cortical function. Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex.
doi_str_mv 10.1038/nrn.2018.20
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5933075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534908600</galeid><sourcerecordid>A534908600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-df5ab7205b154ac9c2a1d2ecaa70c74f2349167705869f045360ef5e24801d743</originalsourceid><addsrcrecordid>eNptkt-LEzEQxxdRvLvqk--y4IuHtk5-bbI-CLWoJxR8UfAtpNlsm2M3qcluxf_eWXr2vOMIJCH5zDffmUxRvCCwIMDUu5DCggJROD0qzgmXZA7A1ePTnv08Ky5yvgYgFZHV0-KM1qJiQtLz4uMqpsFb05VDMgfXdT5sy9-4y-_L3tmdCT73uTShKW3s9-NgBh8D4vvkg_X7zuVnxZPWdNk9v1lnxY_Pn76vrubrb1--rpbruRVcDvOmFWYjKYgNEdzY2lJDGuqsMRKs5C1lvCaVlCBUVbfABavAtcJRroA0krNZ8eGoux83vWusC2i502ikN-mPjsbruzfB7_Q2HrSoGQMpUODyKLC7F3a1XOvpDCiAYqAOBNnXN4-l-Gt0edC9zxbrY4KLY9ZYcHSK7CT76h56HceENZooDpJTptQttTWd0z60ET3aSVQvBaYOqsKfmhWLBygcjeu9jcG1Hs_vBLw5BtgUc06uPSVGQE_tobE9JrcKJ6Rf_l_CE_uvHxB4ewTy9L9bl25zeUjvL8Ebwgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040742388</pqid></control><display><type>article</type><title>Cortical travelling waves: mechanisms and computational principles</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Muller, Lyle ; Chavane, Frédéric ; Reynolds, John ; Sejnowski, Terrence J.</creator><creatorcontrib>Muller, Lyle ; Chavane, Frédéric ; Reynolds, John ; Sejnowski, Terrence J.</creatorcontrib><description>Advanced recording techniques have enabled the identification of travelling waves of neuronal activity in different areas of the cortex. Sejnowski and colleagues review these findings, consider the mechanisms by which travelling waves are generated and evaluate their possible roles in cortical function. Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex.</description><identifier>ISSN: 1471-003X</identifier><identifier>EISSN: 1471-0048</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.1038/nrn.2018.20</identifier><identifier>PMID: 29563572</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116/2393 ; 631/378/116/2395 ; 631/378/2613 ; 9/26 ; 9/30 ; 9/97 ; Activity patterns ; Animal Genetics and Genomics ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Brain research ; Cognitive ability ; Cognitive science ; Computational neuroscience ; Electrodes ; Electroencephalography ; Excitability ; External stimuli ; Information processing ; Localization (Brain function) ; Long term memory ; Neural circuitry ; Neural networks ; Neurobiology ; Neuroscience ; Neurosciences ; Propagation ; review-article ; Sleep ; Somatosensory cortex ; Synchronization ; Visual cortex ; Visual pathways ; Visual stimuli</subject><ispartof>Nature reviews. Neuroscience, 2018-05, Vol.19 (5), p.255-268</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-df5ab7205b154ac9c2a1d2ecaa70c74f2349167705869f045360ef5e24801d743</citedby><cites>FETCH-LOGICAL-c547t-df5ab7205b154ac9c2a1d2ecaa70c74f2349167705869f045360ef5e24801d743</cites><orcidid>0000-0001-7916-2640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nrn.2018.20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nrn.2018.20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29563572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://amu.hal.science/hal-02008308$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Muller, Lyle</creatorcontrib><creatorcontrib>Chavane, Frédéric</creatorcontrib><creatorcontrib>Reynolds, John</creatorcontrib><creatorcontrib>Sejnowski, Terrence J.</creatorcontrib><title>Cortical travelling waves: mechanisms and computational principles</title><title>Nature reviews. Neuroscience</title><addtitle>Nat Rev Neurosci</addtitle><addtitle>Nat Rev Neurosci</addtitle><description>Advanced recording techniques have enabled the identification of travelling waves of neuronal activity in different areas of the cortex. Sejnowski and colleagues review these findings, consider the mechanisms by which travelling waves are generated and evaluate their possible roles in cortical function. Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex.</description><subject>631/378/116/2393</subject><subject>631/378/116/2395</subject><subject>631/378/2613</subject><subject>9/26</subject><subject>9/30</subject><subject>9/97</subject><subject>Activity patterns</subject><subject>Animal Genetics and Genomics</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Brain research</subject><subject>Cognitive ability</subject><subject>Cognitive science</subject><subject>Computational neuroscience</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Excitability</subject><subject>External stimuli</subject><subject>Information processing</subject><subject>Localization (Brain function)</subject><subject>Long term memory</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Propagation</subject><subject>review-article</subject><subject>Sleep</subject><subject>Somatosensory cortex</subject><subject>Synchronization</subject><subject>Visual cortex</subject><subject>Visual pathways</subject><subject>Visual stimuli</subject><issn>1471-003X</issn><issn>1471-0048</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkt-LEzEQxxdRvLvqk--y4IuHtk5-bbI-CLWoJxR8UfAtpNlsm2M3qcluxf_eWXr2vOMIJCH5zDffmUxRvCCwIMDUu5DCggJROD0qzgmXZA7A1ePTnv08Ky5yvgYgFZHV0-KM1qJiQtLz4uMqpsFb05VDMgfXdT5sy9-4y-_L3tmdCT73uTShKW3s9-NgBh8D4vvkg_X7zuVnxZPWdNk9v1lnxY_Pn76vrubrb1--rpbruRVcDvOmFWYjKYgNEdzY2lJDGuqsMRKs5C1lvCaVlCBUVbfABavAtcJRroA0krNZ8eGoux83vWusC2i502ikN-mPjsbruzfB7_Q2HrSoGQMpUODyKLC7F3a1XOvpDCiAYqAOBNnXN4-l-Gt0edC9zxbrY4KLY9ZYcHSK7CT76h56HceENZooDpJTptQttTWd0z60ET3aSVQvBaYOqsKfmhWLBygcjeu9jcG1Hs_vBLw5BtgUc06uPSVGQE_tobE9JrcKJ6Rf_l_CE_uvHxB4ewTy9L9bl25zeUjvL8Ebwgg</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Muller, Lyle</creator><creator>Chavane, Frédéric</creator><creator>Reynolds, John</creator><creator>Sejnowski, Terrence J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7916-2640</orcidid></search><sort><creationdate>20180501</creationdate><title>Cortical travelling waves: mechanisms and computational principles</title><author>Muller, Lyle ; Chavane, Frédéric ; Reynolds, John ; Sejnowski, Terrence J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-df5ab7205b154ac9c2a1d2ecaa70c74f2349167705869f045360ef5e24801d743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378/116/2393</topic><topic>631/378/116/2395</topic><topic>631/378/2613</topic><topic>9/26</topic><topic>9/30</topic><topic>9/97</topic><topic>Activity patterns</topic><topic>Animal Genetics and Genomics</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Brain research</topic><topic>Cognitive ability</topic><topic>Cognitive science</topic><topic>Computational neuroscience</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Excitability</topic><topic>External stimuli</topic><topic>Information processing</topic><topic>Localization (Brain function)</topic><topic>Long term memory</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Propagation</topic><topic>review-article</topic><topic>Sleep</topic><topic>Somatosensory cortex</topic><topic>Synchronization</topic><topic>Visual cortex</topic><topic>Visual pathways</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muller, Lyle</creatorcontrib><creatorcontrib>Chavane, Frédéric</creatorcontrib><creatorcontrib>Reynolds, John</creatorcontrib><creatorcontrib>Sejnowski, Terrence J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature reviews. Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muller, Lyle</au><au>Chavane, Frédéric</au><au>Reynolds, John</au><au>Sejnowski, Terrence J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical travelling waves: mechanisms and computational principles</atitle><jtitle>Nature reviews. Neuroscience</jtitle><stitle>Nat Rev Neurosci</stitle><addtitle>Nat Rev Neurosci</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>19</volume><issue>5</issue><spage>255</spage><epage>268</epage><pages>255-268</pages><issn>1471-003X</issn><eissn>1471-0048</eissn><eissn>1469-3178</eissn><abstract>Advanced recording techniques have enabled the identification of travelling waves of neuronal activity in different areas of the cortex. Sejnowski and colleagues review these findings, consider the mechanisms by which travelling waves are generated and evaluate their possible roles in cortical function. Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29563572</pmid><doi>10.1038/nrn.2018.20</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7916-2640</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-003X
ispartof Nature reviews. Neuroscience, 2018-05, Vol.19 (5), p.255-268
issn 1471-003X
1471-0048
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5933075
source SpringerLink Journals; Nature Journals Online
subjects 631/378/116/2393
631/378/116/2395
631/378/2613
9/26
9/30
9/97
Activity patterns
Animal Genetics and Genomics
Behavioral Sciences
Biological Techniques
Biomedicine
Brain research
Cognitive ability
Cognitive science
Computational neuroscience
Electrodes
Electroencephalography
Excitability
External stimuli
Information processing
Localization (Brain function)
Long term memory
Neural circuitry
Neural networks
Neurobiology
Neuroscience
Neurosciences
Propagation
review-article
Sleep
Somatosensory cortex
Synchronization
Visual cortex
Visual pathways
Visual stimuli
title Cortical travelling waves: mechanisms and computational principles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20travelling%20waves:%20mechanisms%20and%20computational%20principles&rft.jtitle=Nature%20reviews.%20Neuroscience&rft.au=Muller,%20Lyle&rft.date=2018-05-01&rft.volume=19&rft.issue=5&rft.spage=255&rft.epage=268&rft.pages=255-268&rft.issn=1471-003X&rft.eissn=1471-0048&rft_id=info:doi/10.1038/nrn.2018.20&rft_dat=%3Cgale_pubme%3EA534908600%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040742388&rft_id=info:pmid/29563572&rft_galeid=A534908600&rfr_iscdi=true