Direct visualization of single virus restoration after damage in real time

We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological physics 2018-06, Vol.44 (2), p.225-235
Hauptverfasser: de Pablo, Pedro J., Hernando-Pérez, Mercedes, Carrasco, Carolina, Carrascosa, José L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 2
container_start_page 225
container_title Journal of biological physics
container_volume 44
creator de Pablo, Pedro J.
Hernando-Pérez, Mercedes
Carrasco, Carolina
Carrascosa, José L.
description We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode. The normal behavior is that these cracks persist in time. However, in very rare occasions they self-recuperate to retrieve apparently unaltered virus particles. In this work, we show the topographical evolution of three of these exceptional events occurring in T7 bacteriophage capsids. Our data show that single nanoindentation produces a local recoverable fracture that corresponds to the deepening of a capsomer. In contrast, imaging in dynamic mode induced cracks that separate the virus morphological subunits. In both cases, the breakage patterns follow intratrimeric loci.
doi_str_mv 10.1007/s10867-018-9492-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5928024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025318424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-1f08f10c5502f3ed51200980579e917891da5968606b3f09c193525a5813fcc53</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhi1UBMvHD-BSReqll8CMEzv2pVIF5UsrcWnPlvHaW6Mk3trJSvDr8ZKFtkicLM_7zDszegk5QThFgOYsIQjelICilLWkpdwhM2RNVQIX8hOZAeQicOD75CClB8h_Qdke2aeSs7qmfEZuL3y0ZijWPo269U968KEvgiuS75etzfU4piLaNIQ4adoNNhYL3emlLXyfNd0Wg-_sEdl1uk32ePsekl-XP36eX5fzu6ub8-_z0tQNDCU6EA7BMAbUVXbBkG72AtZIK7EREheaSS7y2veVA2lQVowyzQRWzhhWHZJvk-9qvO_swth-iLpVq-g7HR9V0F79r_T-t1qGtWKSCqB1Nvi6NYjhz5hPU51Pxrat7m0Yk6JAWYWifkG_vEMfwhj7fN6GqjmXKDFTOFEmhpSidW_LIKhNUmpKSuWk1CYpJXPP53-veOt4jSYDdAJSlvqljX9Hf-z6DDLenbY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024669191</pqid></control><display><type>article</type><title>Direct visualization of single virus restoration after damage in real time</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>de Pablo, Pedro J. ; Hernando-Pérez, Mercedes ; Carrasco, Carolina ; Carrascosa, José L.</creator><creatorcontrib>de Pablo, Pedro J. ; Hernando-Pérez, Mercedes ; Carrasco, Carolina ; Carrascosa, José L.</creatorcontrib><description>We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode. The normal behavior is that these cracks persist in time. However, in very rare occasions they self-recuperate to retrieve apparently unaltered virus particles. In this work, we show the topographical evolution of three of these exceptional events occurring in T7 bacteriophage capsids. Our data show that single nanoindentation produces a local recoverable fracture that corresponds to the deepening of a capsomer. In contrast, imaging in dynamic mode induced cracks that separate the virus morphological subunits. In both cases, the breakage patterns follow intratrimeric loci.</description><identifier>ISSN: 0092-0606</identifier><identifier>EISSN: 1573-0689</identifier><identifier>DOI: 10.1007/s10867-018-9492-9</identifier><identifier>PMID: 29654426</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atomic force microscopy ; Bacteriophage T7 - metabolism ; Bacteriophage T7 - physiology ; Biochemistry ; Biological and Medical Physics ; Biomechanical Phenomena ; Biophysics ; Capsid - chemistry ; Capsid - metabolism ; Capsids ; Complex Fluids and Microfluidics ; Complex Systems ; Mechanical properties ; Microscopy, Atomic Force ; Neurosciences ; Original Paper ; Physics ; Physics and Astronomy ; Shells ; Soft and Granular Matter ; Time Factors ; Virion - chemistry ; Virion - metabolism</subject><ispartof>Journal of biological physics, 2018-06, Vol.44 (2), p.225-235</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Journal of Biological Physics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-1f08f10c5502f3ed51200980579e917891da5968606b3f09c193525a5813fcc53</citedby><cites>FETCH-LOGICAL-c470t-1f08f10c5502f3ed51200980579e917891da5968606b3f09c193525a5813fcc53</cites><orcidid>0000-0003-2386-3186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928024/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928024/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29654426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Pablo, Pedro J.</creatorcontrib><creatorcontrib>Hernando-Pérez, Mercedes</creatorcontrib><creatorcontrib>Carrasco, Carolina</creatorcontrib><creatorcontrib>Carrascosa, José L.</creatorcontrib><title>Direct visualization of single virus restoration after damage in real time</title><title>Journal of biological physics</title><addtitle>J Biol Phys</addtitle><addtitle>J Biol Phys</addtitle><description>We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode. The normal behavior is that these cracks persist in time. However, in very rare occasions they self-recuperate to retrieve apparently unaltered virus particles. In this work, we show the topographical evolution of three of these exceptional events occurring in T7 bacteriophage capsids. Our data show that single nanoindentation produces a local recoverable fracture that corresponds to the deepening of a capsomer. In contrast, imaging in dynamic mode induced cracks that separate the virus morphological subunits. In both cases, the breakage patterns follow intratrimeric loci.</description><subject>Atomic force microscopy</subject><subject>Bacteriophage T7 - metabolism</subject><subject>Bacteriophage T7 - physiology</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomechanical Phenomena</subject><subject>Biophysics</subject><subject>Capsid - chemistry</subject><subject>Capsid - metabolism</subject><subject>Capsids</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Mechanical properties</subject><subject>Microscopy, Atomic Force</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Shells</subject><subject>Soft and Granular Matter</subject><subject>Time Factors</subject><subject>Virion - chemistry</subject><subject>Virion - metabolism</subject><issn>0092-0606</issn><issn>1573-0689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1P3DAQhi1UBMvHD-BSReqll8CMEzv2pVIF5UsrcWnPlvHaW6Mk3trJSvDr8ZKFtkicLM_7zDszegk5QThFgOYsIQjelICilLWkpdwhM2RNVQIX8hOZAeQicOD75CClB8h_Qdke2aeSs7qmfEZuL3y0ZijWPo269U968KEvgiuS75etzfU4piLaNIQ4adoNNhYL3emlLXyfNd0Wg-_sEdl1uk32ePsekl-XP36eX5fzu6ub8-_z0tQNDCU6EA7BMAbUVXbBkG72AtZIK7EREheaSS7y2veVA2lQVowyzQRWzhhWHZJvk-9qvO_swth-iLpVq-g7HR9V0F79r_T-t1qGtWKSCqB1Nvi6NYjhz5hPU51Pxrat7m0Yk6JAWYWifkG_vEMfwhj7fN6GqjmXKDFTOFEmhpSidW_LIKhNUmpKSuWk1CYpJXPP53-veOt4jSYDdAJSlvqljX9Hf-z6DDLenbY</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>de Pablo, Pedro J.</creator><creator>Hernando-Pérez, Mercedes</creator><creator>Carrasco, Carolina</creator><creator>Carrascosa, José L.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2386-3186</orcidid></search><sort><creationdate>20180601</creationdate><title>Direct visualization of single virus restoration after damage in real time</title><author>de Pablo, Pedro J. ; Hernando-Pérez, Mercedes ; Carrasco, Carolina ; Carrascosa, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-1f08f10c5502f3ed51200980579e917891da5968606b3f09c193525a5813fcc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic force microscopy</topic><topic>Bacteriophage T7 - metabolism</topic><topic>Bacteriophage T7 - physiology</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomechanical Phenomena</topic><topic>Biophysics</topic><topic>Capsid - chemistry</topic><topic>Capsid - metabolism</topic><topic>Capsids</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Mechanical properties</topic><topic>Microscopy, Atomic Force</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Shells</topic><topic>Soft and Granular Matter</topic><topic>Time Factors</topic><topic>Virion - chemistry</topic><topic>Virion - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Pablo, Pedro J.</creatorcontrib><creatorcontrib>Hernando-Pérez, Mercedes</creatorcontrib><creatorcontrib>Carrasco, Carolina</creatorcontrib><creatorcontrib>Carrascosa, José L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Pablo, Pedro J.</au><au>Hernando-Pérez, Mercedes</au><au>Carrasco, Carolina</au><au>Carrascosa, José L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct visualization of single virus restoration after damage in real time</atitle><jtitle>Journal of biological physics</jtitle><stitle>J Biol Phys</stitle><addtitle>J Biol Phys</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>44</volume><issue>2</issue><spage>225</spage><epage>235</epage><pages>225-235</pages><issn>0092-0606</issn><eissn>1573-0689</eissn><abstract>We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode. The normal behavior is that these cracks persist in time. However, in very rare occasions they self-recuperate to retrieve apparently unaltered virus particles. In this work, we show the topographical evolution of three of these exceptional events occurring in T7 bacteriophage capsids. Our data show that single nanoindentation produces a local recoverable fracture that corresponds to the deepening of a capsomer. In contrast, imaging in dynamic mode induced cracks that separate the virus morphological subunits. In both cases, the breakage patterns follow intratrimeric loci.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>29654426</pmid><doi>10.1007/s10867-018-9492-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2386-3186</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-0606
ispartof Journal of biological physics, 2018-06, Vol.44 (2), p.225-235
issn 0092-0606
1573-0689
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5928024
source MEDLINE; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Atomic force microscopy
Bacteriophage T7 - metabolism
Bacteriophage T7 - physiology
Biochemistry
Biological and Medical Physics
Biomechanical Phenomena
Biophysics
Capsid - chemistry
Capsid - metabolism
Capsids
Complex Fluids and Microfluidics
Complex Systems
Mechanical properties
Microscopy, Atomic Force
Neurosciences
Original Paper
Physics
Physics and Astronomy
Shells
Soft and Granular Matter
Time Factors
Virion - chemistry
Virion - metabolism
title Direct visualization of single virus restoration after damage in real time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20visualization%20of%20single%20virus%20restoration%20after%20damage%20in%20real%20time&rft.jtitle=Journal%20of%20biological%20physics&rft.au=de%20Pablo,%20Pedro%20J.&rft.date=2018-06-01&rft.volume=44&rft.issue=2&rft.spage=225&rft.epage=235&rft.pages=225-235&rft.issn=0092-0606&rft.eissn=1573-0689&rft_id=info:doi/10.1007/s10867-018-9492-9&rft_dat=%3Cproquest_pubme%3E2025318424%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024669191&rft_id=info:pmid/29654426&rfr_iscdi=true