Direct visualization of single virus restoration after damage in real time
We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode....
Gespeichert in:
Veröffentlicht in: | Journal of biological physics 2018-06, Vol.44 (2), p.225-235 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 235 |
---|---|
container_issue | 2 |
container_start_page | 225 |
container_title | Journal of biological physics |
container_volume | 44 |
creator | de Pablo, Pedro J. Hernando-Pérez, Mercedes Carrasco, Carolina Carrascosa, José L. |
description | We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode. The normal behavior is that these cracks persist in time. However, in very rare occasions they self-recuperate to retrieve apparently unaltered virus particles. In this work, we show the topographical evolution of three of these exceptional events occurring in T7 bacteriophage capsids. Our data show that single nanoindentation produces a local recoverable fracture that corresponds to the deepening of a capsomer. In contrast, imaging in dynamic mode induced cracks that separate the virus morphological subunits. In both cases, the breakage patterns follow intratrimeric loci. |
doi_str_mv | 10.1007/s10867-018-9492-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5928024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025318424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-1f08f10c5502f3ed51200980579e917891da5968606b3f09c193525a5813fcc53</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhi1UBMvHD-BSReqll8CMEzv2pVIF5UsrcWnPlvHaW6Mk3trJSvDr8ZKFtkicLM_7zDszegk5QThFgOYsIQjelICilLWkpdwhM2RNVQIX8hOZAeQicOD75CClB8h_Qdke2aeSs7qmfEZuL3y0ZijWPo269U968KEvgiuS75etzfU4piLaNIQ4adoNNhYL3emlLXyfNd0Wg-_sEdl1uk32ePsekl-XP36eX5fzu6ub8-_z0tQNDCU6EA7BMAbUVXbBkG72AtZIK7EREheaSS7y2veVA2lQVowyzQRWzhhWHZJvk-9qvO_swth-iLpVq-g7HR9V0F79r_T-t1qGtWKSCqB1Nvi6NYjhz5hPU51Pxrat7m0Yk6JAWYWifkG_vEMfwhj7fN6GqjmXKDFTOFEmhpSidW_LIKhNUmpKSuWk1CYpJXPP53-veOt4jSYDdAJSlvqljX9Hf-z6DDLenbY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024669191</pqid></control><display><type>article</type><title>Direct visualization of single virus restoration after damage in real time</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>de Pablo, Pedro J. ; Hernando-Pérez, Mercedes ; Carrasco, Carolina ; Carrascosa, José L.</creator><creatorcontrib>de Pablo, Pedro J. ; Hernando-Pérez, Mercedes ; Carrasco, Carolina ; Carrascosa, José L.</creatorcontrib><description>We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode. The normal behavior is that these cracks persist in time. However, in very rare occasions they self-recuperate to retrieve apparently unaltered virus particles. In this work, we show the topographical evolution of three of these exceptional events occurring in T7 bacteriophage capsids. Our data show that single nanoindentation produces a local recoverable fracture that corresponds to the deepening of a capsomer. In contrast, imaging in dynamic mode induced cracks that separate the virus morphological subunits. In both cases, the breakage patterns follow intratrimeric loci.</description><identifier>ISSN: 0092-0606</identifier><identifier>EISSN: 1573-0689</identifier><identifier>DOI: 10.1007/s10867-018-9492-9</identifier><identifier>PMID: 29654426</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atomic force microscopy ; Bacteriophage T7 - metabolism ; Bacteriophage T7 - physiology ; Biochemistry ; Biological and Medical Physics ; Biomechanical Phenomena ; Biophysics ; Capsid - chemistry ; Capsid - metabolism ; Capsids ; Complex Fluids and Microfluidics ; Complex Systems ; Mechanical properties ; Microscopy, Atomic Force ; Neurosciences ; Original Paper ; Physics ; Physics and Astronomy ; Shells ; Soft and Granular Matter ; Time Factors ; Virion - chemistry ; Virion - metabolism</subject><ispartof>Journal of biological physics, 2018-06, Vol.44 (2), p.225-235</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Journal of Biological Physics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-1f08f10c5502f3ed51200980579e917891da5968606b3f09c193525a5813fcc53</citedby><cites>FETCH-LOGICAL-c470t-1f08f10c5502f3ed51200980579e917891da5968606b3f09c193525a5813fcc53</cites><orcidid>0000-0003-2386-3186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928024/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928024/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29654426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Pablo, Pedro J.</creatorcontrib><creatorcontrib>Hernando-Pérez, Mercedes</creatorcontrib><creatorcontrib>Carrasco, Carolina</creatorcontrib><creatorcontrib>Carrascosa, José L.</creatorcontrib><title>Direct visualization of single virus restoration after damage in real time</title><title>Journal of biological physics</title><addtitle>J Biol Phys</addtitle><addtitle>J Biol Phys</addtitle><description>We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode. The normal behavior is that these cracks persist in time. However, in very rare occasions they self-recuperate to retrieve apparently unaltered virus particles. In this work, we show the topographical evolution of three of these exceptional events occurring in T7 bacteriophage capsids. Our data show that single nanoindentation produces a local recoverable fracture that corresponds to the deepening of a capsomer. In contrast, imaging in dynamic mode induced cracks that separate the virus morphological subunits. In both cases, the breakage patterns follow intratrimeric loci.</description><subject>Atomic force microscopy</subject><subject>Bacteriophage T7 - metabolism</subject><subject>Bacteriophage T7 - physiology</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomechanical Phenomena</subject><subject>Biophysics</subject><subject>Capsid - chemistry</subject><subject>Capsid - metabolism</subject><subject>Capsids</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Mechanical properties</subject><subject>Microscopy, Atomic Force</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Shells</subject><subject>Soft and Granular Matter</subject><subject>Time Factors</subject><subject>Virion - chemistry</subject><subject>Virion - metabolism</subject><issn>0092-0606</issn><issn>1573-0689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1P3DAQhi1UBMvHD-BSReqll8CMEzv2pVIF5UsrcWnPlvHaW6Mk3trJSvDr8ZKFtkicLM_7zDszegk5QThFgOYsIQjelICilLWkpdwhM2RNVQIX8hOZAeQicOD75CClB8h_Qdke2aeSs7qmfEZuL3y0ZijWPo269U968KEvgiuS75etzfU4piLaNIQ4adoNNhYL3emlLXyfNd0Wg-_sEdl1uk32ePsekl-XP36eX5fzu6ub8-_z0tQNDCU6EA7BMAbUVXbBkG72AtZIK7EREheaSS7y2veVA2lQVowyzQRWzhhWHZJvk-9qvO_swth-iLpVq-g7HR9V0F79r_T-t1qGtWKSCqB1Nvi6NYjhz5hPU51Pxrat7m0Yk6JAWYWifkG_vEMfwhj7fN6GqjmXKDFTOFEmhpSidW_LIKhNUmpKSuWk1CYpJXPP53-veOt4jSYDdAJSlvqljX9Hf-z6DDLenbY</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>de Pablo, Pedro J.</creator><creator>Hernando-Pérez, Mercedes</creator><creator>Carrasco, Carolina</creator><creator>Carrascosa, José L.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2386-3186</orcidid></search><sort><creationdate>20180601</creationdate><title>Direct visualization of single virus restoration after damage in real time</title><author>de Pablo, Pedro J. ; Hernando-Pérez, Mercedes ; Carrasco, Carolina ; Carrascosa, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-1f08f10c5502f3ed51200980579e917891da5968606b3f09c193525a5813fcc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic force microscopy</topic><topic>Bacteriophage T7 - metabolism</topic><topic>Bacteriophage T7 - physiology</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomechanical Phenomena</topic><topic>Biophysics</topic><topic>Capsid - chemistry</topic><topic>Capsid - metabolism</topic><topic>Capsids</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Mechanical properties</topic><topic>Microscopy, Atomic Force</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Shells</topic><topic>Soft and Granular Matter</topic><topic>Time Factors</topic><topic>Virion - chemistry</topic><topic>Virion - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Pablo, Pedro J.</creatorcontrib><creatorcontrib>Hernando-Pérez, Mercedes</creatorcontrib><creatorcontrib>Carrasco, Carolina</creatorcontrib><creatorcontrib>Carrascosa, José L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Pablo, Pedro J.</au><au>Hernando-Pérez, Mercedes</au><au>Carrasco, Carolina</au><au>Carrascosa, José L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct visualization of single virus restoration after damage in real time</atitle><jtitle>Journal of biological physics</jtitle><stitle>J Biol Phys</stitle><addtitle>J Biol Phys</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>44</volume><issue>2</issue><spage>225</spage><epage>235</epage><pages>225-235</pages><issn>0092-0606</issn><eissn>1573-0689</eissn><abstract>We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode. The normal behavior is that these cracks persist in time. However, in very rare occasions they self-recuperate to retrieve apparently unaltered virus particles. In this work, we show the topographical evolution of three of these exceptional events occurring in T7 bacteriophage capsids. Our data show that single nanoindentation produces a local recoverable fracture that corresponds to the deepening of a capsomer. In contrast, imaging in dynamic mode induced cracks that separate the virus morphological subunits. In both cases, the breakage patterns follow intratrimeric loci.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>29654426</pmid><doi>10.1007/s10867-018-9492-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2386-3186</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-0606 |
ispartof | Journal of biological physics, 2018-06, Vol.44 (2), p.225-235 |
issn | 0092-0606 1573-0689 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5928024 |
source | MEDLINE; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Atomic force microscopy Bacteriophage T7 - metabolism Bacteriophage T7 - physiology Biochemistry Biological and Medical Physics Biomechanical Phenomena Biophysics Capsid - chemistry Capsid - metabolism Capsids Complex Fluids and Microfluidics Complex Systems Mechanical properties Microscopy, Atomic Force Neurosciences Original Paper Physics Physics and Astronomy Shells Soft and Granular Matter Time Factors Virion - chemistry Virion - metabolism |
title | Direct visualization of single virus restoration after damage in real time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20visualization%20of%20single%20virus%20restoration%20after%20damage%20in%20real%20time&rft.jtitle=Journal%20of%20biological%20physics&rft.au=de%20Pablo,%20Pedro%20J.&rft.date=2018-06-01&rft.volume=44&rft.issue=2&rft.spage=225&rft.epage=235&rft.pages=225-235&rft.issn=0092-0606&rft.eissn=1573-0689&rft_id=info:doi/10.1007/s10867-018-9492-9&rft_dat=%3Cproquest_pubme%3E2025318424%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024669191&rft_id=info:pmid/29654426&rfr_iscdi=true |