Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of Pseudomonas aeruginosa
β-Lactam antibiotics inhibit cell-wall transpeptidases, preventing the peptidoglycan, the major constituent of the bacterial cell wall, from cross-linking. This causes accumulation of long non–crosslinked strands of peptidoglycan, which leads to bacterial death. Pseudomonas aeruginosa, a nefarious b...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-04, Vol.115 (17), p.4393-4398 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4398 |
---|---|
container_issue | 17 |
container_start_page | 4393 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Lee, Mijoon Batuecas, María T. Tomoshige, Shusuke Domínguez-Gil, Teresa Mahasenan, Kiran V. Dik, David A. Hesek, Dusan Millán, Claudia Usón, Isabel Lastochkin, Elena Hermoso, Juan A. Mobashery, Shahriar |
description | β-Lactam antibiotics inhibit cell-wall transpeptidases, preventing the peptidoglycan, the major constituent of the bacterial cell wall, from cross-linking. This causes accumulation of long non–crosslinked strands of peptidoglycan, which leads to bacterial death. Pseudomonas aeruginosa, a nefarious bacterial pathogen, attempts to repair this aberrantly formed peptidoglycan by the function of the lytic transglycosylase Slt. We document in this report that Slt turns over the peptidoglycan by both exolytic and endolytic reactions, which cause glycosidic bond scission from a terminus or in the middle of the peptidoglycan, respectively. These reactions were characterized with complex synthetic peptidoglycan fragments that ranged in size from tetrasaccharides to octasaccharides. The X-ray structure of the wild-type apo Slt revealed it to be a doughnut-shaped protein. In a series of six additional X-ray crystal structures, we provide insights with authentic substrates into how Slt is enabled for catalysis for both the endolytic and exolytic reactions. The substrate for the exolytic reaction binds Slt in a canonical arrangement and reveals how both the glycan chain and the peptide stems are recognized by the Slt. We document that the apo enzyme does not have a fully formed active site for the endolytic reaction. However, binding of the peptidoglycan at the existing subsites within the catalytic domain causes a conformational change in the protein that assembles the surface for binding of a more expansive peptidoglycan between the catalytic domain and an adjacent domain. The complexes of Slt with synthetic peptidoglycan substrates provide an unprecedented snapshot of the endolytic reaction. |
doi_str_mv | 10.1073/pnas.1801298115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508648</jstor_id><sourcerecordid>26508648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6e603e88ea32643e3a431bb8a60940c562453a39baf1ddd326b4337bd7b01f963</originalsourceid><addsrcrecordid>eNpdkc1v1DAUxC0EokvhzAkUiQuXtM8fcewLEqoKVKrUSsDZcuKXbVZZO9hJRf57HO3SUk6W_X4ez3gIeUvhjELNz0dv0xlVQJlWlFbPyIaCpqUUGp6TDQCrSyWYOCGvUtoBgK4UvCQnTEvOaE035O7ydxiWqW8L612B3h130xx9uMdYhK4YcZx6F7bD0lpfNEtxRKL1aT0MaRlswuL7MK34bcLZhX3I1gqLcd72PiT7mrzo7JDwzXE9JT-_XP64-FZe33y9uvh8XbZC8KmUKIGjUmg5k4Ijt4LTplFWghbQVpKJiluuG9tR51yGGsF53bi6AdrlWKfk00F3nJs9uhZ99jmYMfZ7GxcTbG-eTnx_Z7bh3lSaCc1UFvh4FIjh14xpMvs-tTgM1mOYk2HAeM00VOtbH_5DdyH_W46XKa11zSutM3V-oNoYUorYPZihYNYWzdqieWwx33j_b4YH_m9tGXh3AHZpCvFxLitQUij-BzIVpOk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099973599</pqid></control><display><type>article</type><title>Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of Pseudomonas aeruginosa</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Mijoon ; Batuecas, María T. ; Tomoshige, Shusuke ; Domínguez-Gil, Teresa ; Mahasenan, Kiran V. ; Dik, David A. ; Hesek, Dusan ; Millán, Claudia ; Usón, Isabel ; Lastochkin, Elena ; Hermoso, Juan A. ; Mobashery, Shahriar</creator><creatorcontrib>Lee, Mijoon ; Batuecas, María T. ; Tomoshige, Shusuke ; Domínguez-Gil, Teresa ; Mahasenan, Kiran V. ; Dik, David A. ; Hesek, Dusan ; Millán, Claudia ; Usón, Isabel ; Lastochkin, Elena ; Hermoso, Juan A. ; Mobashery, Shahriar</creatorcontrib><description>β-Lactam antibiotics inhibit cell-wall transpeptidases, preventing the peptidoglycan, the major constituent of the bacterial cell wall, from cross-linking. This causes accumulation of long non–crosslinked strands of peptidoglycan, which leads to bacterial death. Pseudomonas aeruginosa, a nefarious bacterial pathogen, attempts to repair this aberrantly formed peptidoglycan by the function of the lytic transglycosylase Slt. We document in this report that Slt turns over the peptidoglycan by both exolytic and endolytic reactions, which cause glycosidic bond scission from a terminus or in the middle of the peptidoglycan, respectively. These reactions were characterized with complex synthetic peptidoglycan fragments that ranged in size from tetrasaccharides to octasaccharides. The X-ray structure of the wild-type apo Slt revealed it to be a doughnut-shaped protein. In a series of six additional X-ray crystal structures, we provide insights with authentic substrates into how Slt is enabled for catalysis for both the endolytic and exolytic reactions. The substrate for the exolytic reaction binds Slt in a canonical arrangement and reveals how both the glycan chain and the peptide stems are recognized by the Slt. We document that the apo enzyme does not have a fully formed active site for the endolytic reaction. However, binding of the peptidoglycan at the existing subsites within the catalytic domain causes a conformational change in the protein that assembles the surface for binding of a more expansive peptidoglycan between the catalytic domain and an adjacent domain. The complexes of Slt with synthetic peptidoglycan substrates provide an unprecedented snapshot of the endolytic reaction.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1801298115</identifier><identifier>PMID: 29632171</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amides ; Antibiotics ; Bacteria ; Bacterial Proteins - chemistry ; Binding ; Biological Sciences ; Catalysis ; Cell walls ; Cleavage ; Crosslinking ; Crystal structure ; Crystallography, X-Ray ; Enzymes ; Glycan ; Glycoside Hydrolases - chemistry ; Gram-negative bacteria ; Peptides ; Peptidoglycan - chemistry ; Peptidoglycans ; Protein Domains ; Proteins ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - enzymology ; Structure-Activity Relationship ; Substrates ; β-Lactam antibiotics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (17), p.4393-4398</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Apr 24, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6e603e88ea32643e3a431bb8a60940c562453a39baf1ddd326b4337bd7b01f963</citedby><cites>FETCH-LOGICAL-c443t-6e603e88ea32643e3a431bb8a60940c562453a39baf1ddd326b4337bd7b01f963</cites><orcidid>0000-0001-6288-8824 ; 0000-0002-9283-2220 ; 0000-0001-7432-0427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508648$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508648$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29632171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Mijoon</creatorcontrib><creatorcontrib>Batuecas, María T.</creatorcontrib><creatorcontrib>Tomoshige, Shusuke</creatorcontrib><creatorcontrib>Domínguez-Gil, Teresa</creatorcontrib><creatorcontrib>Mahasenan, Kiran V.</creatorcontrib><creatorcontrib>Dik, David A.</creatorcontrib><creatorcontrib>Hesek, Dusan</creatorcontrib><creatorcontrib>Millán, Claudia</creatorcontrib><creatorcontrib>Usón, Isabel</creatorcontrib><creatorcontrib>Lastochkin, Elena</creatorcontrib><creatorcontrib>Hermoso, Juan A.</creatorcontrib><creatorcontrib>Mobashery, Shahriar</creatorcontrib><title>Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of Pseudomonas aeruginosa</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>β-Lactam antibiotics inhibit cell-wall transpeptidases, preventing the peptidoglycan, the major constituent of the bacterial cell wall, from cross-linking. This causes accumulation of long non–crosslinked strands of peptidoglycan, which leads to bacterial death. Pseudomonas aeruginosa, a nefarious bacterial pathogen, attempts to repair this aberrantly formed peptidoglycan by the function of the lytic transglycosylase Slt. We document in this report that Slt turns over the peptidoglycan by both exolytic and endolytic reactions, which cause glycosidic bond scission from a terminus or in the middle of the peptidoglycan, respectively. These reactions were characterized with complex synthetic peptidoglycan fragments that ranged in size from tetrasaccharides to octasaccharides. The X-ray structure of the wild-type apo Slt revealed it to be a doughnut-shaped protein. In a series of six additional X-ray crystal structures, we provide insights with authentic substrates into how Slt is enabled for catalysis for both the endolytic and exolytic reactions. The substrate for the exolytic reaction binds Slt in a canonical arrangement and reveals how both the glycan chain and the peptide stems are recognized by the Slt. We document that the apo enzyme does not have a fully formed active site for the endolytic reaction. However, binding of the peptidoglycan at the existing subsites within the catalytic domain causes a conformational change in the protein that assembles the surface for binding of a more expansive peptidoglycan between the catalytic domain and an adjacent domain. The complexes of Slt with synthetic peptidoglycan substrates provide an unprecedented snapshot of the endolytic reaction.</description><subject>Amides</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Binding</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Cell walls</subject><subject>Cleavage</subject><subject>Crosslinking</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>Glycan</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Gram-negative bacteria</subject><subject>Peptides</subject><subject>Peptidoglycan - chemistry</subject><subject>Peptidoglycans</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - enzymology</subject><subject>Structure-Activity Relationship</subject><subject>Substrates</subject><subject>β-Lactam antibiotics</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAUxC0EokvhzAkUiQuXtM8fcewLEqoKVKrUSsDZcuKXbVZZO9hJRf57HO3SUk6W_X4ez3gIeUvhjELNz0dv0xlVQJlWlFbPyIaCpqUUGp6TDQCrSyWYOCGvUtoBgK4UvCQnTEvOaE035O7ydxiWqW8L612B3h130xx9uMdYhK4YcZx6F7bD0lpfNEtxRKL1aT0MaRlswuL7MK34bcLZhX3I1gqLcd72PiT7mrzo7JDwzXE9JT-_XP64-FZe33y9uvh8XbZC8KmUKIGjUmg5k4Ijt4LTplFWghbQVpKJiluuG9tR51yGGsF53bi6AdrlWKfk00F3nJs9uhZ99jmYMfZ7GxcTbG-eTnx_Z7bh3lSaCc1UFvh4FIjh14xpMvs-tTgM1mOYk2HAeM00VOtbH_5DdyH_W46XKa11zSutM3V-oNoYUorYPZihYNYWzdqieWwx33j_b4YH_m9tGXh3AHZpCvFxLitQUij-BzIVpOk</recordid><startdate>20180424</startdate><enddate>20180424</enddate><creator>Lee, Mijoon</creator><creator>Batuecas, María T.</creator><creator>Tomoshige, Shusuke</creator><creator>Domínguez-Gil, Teresa</creator><creator>Mahasenan, Kiran V.</creator><creator>Dik, David A.</creator><creator>Hesek, Dusan</creator><creator>Millán, Claudia</creator><creator>Usón, Isabel</creator><creator>Lastochkin, Elena</creator><creator>Hermoso, Juan A.</creator><creator>Mobashery, Shahriar</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6288-8824</orcidid><orcidid>https://orcid.org/0000-0002-9283-2220</orcidid><orcidid>https://orcid.org/0000-0001-7432-0427</orcidid></search><sort><creationdate>20180424</creationdate><title>Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of Pseudomonas aeruginosa</title><author>Lee, Mijoon ; Batuecas, María T. ; Tomoshige, Shusuke ; Domínguez-Gil, Teresa ; Mahasenan, Kiran V. ; Dik, David A. ; Hesek, Dusan ; Millán, Claudia ; Usón, Isabel ; Lastochkin, Elena ; Hermoso, Juan A. ; Mobashery, Shahriar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6e603e88ea32643e3a431bb8a60940c562453a39baf1ddd326b4337bd7b01f963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amides</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Binding</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Cell walls</topic><topic>Cleavage</topic><topic>Crosslinking</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>Glycan</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Gram-negative bacteria</topic><topic>Peptides</topic><topic>Peptidoglycan - chemistry</topic><topic>Peptidoglycans</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - enzymology</topic><topic>Structure-Activity Relationship</topic><topic>Substrates</topic><topic>β-Lactam antibiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Mijoon</creatorcontrib><creatorcontrib>Batuecas, María T.</creatorcontrib><creatorcontrib>Tomoshige, Shusuke</creatorcontrib><creatorcontrib>Domínguez-Gil, Teresa</creatorcontrib><creatorcontrib>Mahasenan, Kiran V.</creatorcontrib><creatorcontrib>Dik, David A.</creatorcontrib><creatorcontrib>Hesek, Dusan</creatorcontrib><creatorcontrib>Millán, Claudia</creatorcontrib><creatorcontrib>Usón, Isabel</creatorcontrib><creatorcontrib>Lastochkin, Elena</creatorcontrib><creatorcontrib>Hermoso, Juan A.</creatorcontrib><creatorcontrib>Mobashery, Shahriar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Mijoon</au><au>Batuecas, María T.</au><au>Tomoshige, Shusuke</au><au>Domínguez-Gil, Teresa</au><au>Mahasenan, Kiran V.</au><au>Dik, David A.</au><au>Hesek, Dusan</au><au>Millán, Claudia</au><au>Usón, Isabel</au><au>Lastochkin, Elena</au><au>Hermoso, Juan A.</au><au>Mobashery, Shahriar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of Pseudomonas aeruginosa</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-04-24</date><risdate>2018</risdate><volume>115</volume><issue>17</issue><spage>4393</spage><epage>4398</epage><pages>4393-4398</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>β-Lactam antibiotics inhibit cell-wall transpeptidases, preventing the peptidoglycan, the major constituent of the bacterial cell wall, from cross-linking. This causes accumulation of long non–crosslinked strands of peptidoglycan, which leads to bacterial death. Pseudomonas aeruginosa, a nefarious bacterial pathogen, attempts to repair this aberrantly formed peptidoglycan by the function of the lytic transglycosylase Slt. We document in this report that Slt turns over the peptidoglycan by both exolytic and endolytic reactions, which cause glycosidic bond scission from a terminus or in the middle of the peptidoglycan, respectively. These reactions were characterized with complex synthetic peptidoglycan fragments that ranged in size from tetrasaccharides to octasaccharides. The X-ray structure of the wild-type apo Slt revealed it to be a doughnut-shaped protein. In a series of six additional X-ray crystal structures, we provide insights with authentic substrates into how Slt is enabled for catalysis for both the endolytic and exolytic reactions. The substrate for the exolytic reaction binds Slt in a canonical arrangement and reveals how both the glycan chain and the peptide stems are recognized by the Slt. We document that the apo enzyme does not have a fully formed active site for the endolytic reaction. However, binding of the peptidoglycan at the existing subsites within the catalytic domain causes a conformational change in the protein that assembles the surface for binding of a more expansive peptidoglycan between the catalytic domain and an adjacent domain. The complexes of Slt with synthetic peptidoglycan substrates provide an unprecedented snapshot of the endolytic reaction.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29632171</pmid><doi>10.1073/pnas.1801298115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6288-8824</orcidid><orcidid>https://orcid.org/0000-0002-9283-2220</orcidid><orcidid>https://orcid.org/0000-0001-7432-0427</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (17), p.4393-4398 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924928 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amides Antibiotics Bacteria Bacterial Proteins - chemistry Binding Biological Sciences Catalysis Cell walls Cleavage Crosslinking Crystal structure Crystallography, X-Ray Enzymes Glycan Glycoside Hydrolases - chemistry Gram-negative bacteria Peptides Peptidoglycan - chemistry Peptidoglycans Protein Domains Proteins Pseudomonas aeruginosa Pseudomonas aeruginosa - enzymology Structure-Activity Relationship Substrates β-Lactam antibiotics |
title | Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of Pseudomonas aeruginosa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exolytic%20and%20endolytic%20turnover%20of%20peptidoglycan%20by%20lytic%20transglycosylase%20Slt%20of%20Pseudomonas%20aeruginosa&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lee,%20Mijoon&rft.date=2018-04-24&rft.volume=115&rft.issue=17&rft.spage=4393&rft.epage=4398&rft.pages=4393-4398&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1801298115&rft_dat=%3Cjstor_pubme%3E26508648%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099973599&rft_id=info:pmid/29632171&rft_jstor_id=26508648&rfr_iscdi=true |