Spider toxin inhibits gating pore currents underlying periodic paralysis
Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these to...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-04, Vol.115 (17), p.4495-4500 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4500 |
---|---|
container_issue | 17 |
container_start_page | 4495 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Männikkö, Roope Shenkarev, Zakhar O. Thor, Michael G. Berkut, Antonina A. Myshkin, Mikhail Yu Paramonov, Alexander S. Kulbatskii, Dmitrii S. Kuzmin, Dmitry A. Castañeda, Marisol Sampedro King, Louise Wilson, Emma R. Lyukmanova, Ekaterina N. Kirpichnikov, Mikhail P. Schorge, Stephanie Bosmans, Frank Hanna, Michael G. Kullmann, Dimitri M. Vassilevski, Alexander A. |
description | Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3–S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP. |
doi_str_mv | 10.1073/pnas.1720185115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508665</jstor_id><sourcerecordid>26508665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9e200da125d53379806985502f19a0908b90a303df73c180c9a726be3fd76783</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMoWh9rV8qA67E3yeS1EaSoFQQXdh_SmUxNqcmYzIj996bW5-rCPd8993AQOsVwiUHQcedNusSCAJYMY7aDRhgULnmlYBeNAIgoZUWqA3SY0hIAFJOwjw6I4pRXWI7Q9KlzjY1FH96dL5x_dnPXp2JheucXRReiLeohRuvzcvCZXK0_BRtdaFxddCaa1Tq5dIz2WrNK9uRrHqHZ7c1sMi0fHu_uJ9cPZV1VtC-VJQCNwYQ1jFKhJHAlGQPSYmVAgZwrMBRo0wpaYwm1MoLwuaVtI7iQ9AhdbW27Yf5imzoHywF0F92LiWsdjNP_Fe-e9SK8aaZIpTDOBhdfBjG8Djb1ehmG6HNkTUApJSgFyNR4S9UxpBRt-_MBg940rzfN69_m88X532A__HfVGTjbAsvUh_ircwaSc0Y_AD7Iibg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099973300</pqid></control><display><type>article</type><title>Spider toxin inhibits gating pore currents underlying periodic paralysis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Männikkö, Roope ; Shenkarev, Zakhar O. ; Thor, Michael G. ; Berkut, Antonina A. ; Myshkin, Mikhail Yu ; Paramonov, Alexander S. ; Kulbatskii, Dmitrii S. ; Kuzmin, Dmitry A. ; Castañeda, Marisol Sampedro ; King, Louise ; Wilson, Emma R. ; Lyukmanova, Ekaterina N. ; Kirpichnikov, Mikhail P. ; Schorge, Stephanie ; Bosmans, Frank ; Hanna, Michael G. ; Kullmann, Dimitri M. ; Vassilevski, Alexander A.</creator><creatorcontrib>Männikkö, Roope ; Shenkarev, Zakhar O. ; Thor, Michael G. ; Berkut, Antonina A. ; Myshkin, Mikhail Yu ; Paramonov, Alexander S. ; Kulbatskii, Dmitrii S. ; Kuzmin, Dmitry A. ; Castañeda, Marisol Sampedro ; King, Louise ; Wilson, Emma R. ; Lyukmanova, Ekaterina N. ; Kirpichnikov, Mikhail P. ; Schorge, Stephanie ; Bosmans, Frank ; Hanna, Michael G. ; Kullmann, Dimitri M. ; Vassilevski, Alexander A.</creatorcontrib><description>Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3–S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1720185115</identifier><identifier>PMID: 29636418</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Substitution ; Animals ; Arginine ; Binding sites ; Biological Sciences ; Channel gating ; Complex formation ; Crabs ; Domains ; Electrostatic properties ; Female ; HEK293 Cells ; Humans ; Hydrophobic surfaces ; Hydrophobicity ; Ion Channel Gating ; Ion channels ; Muscles ; Mutation ; Mutation, Missense ; NAV1.4 Voltage-Gated Sodium Channel - chemistry ; NAV1.4 Voltage-Gated Sodium Channel - genetics ; NAV1.4 Voltage-Gated Sodium Channel - metabolism ; Neurotoxins ; Neurotoxins - toxicity ; NMR ; Nuclear magnetic resonance ; Paralysis ; Paralysis, Hyperkalemic Periodic - genetics ; Paralysis, Hyperkalemic Periodic - metabolism ; Paralysis, Hyperkalemic Periodic - pathology ; Pathogens ; Protein Structure, Secondary ; Skeletal muscle ; Skeletal system ; Sodium ; Sodium channels (voltage-gated) ; Spider Venoms - toxicity ; Studies ; Toxins ; Xenopus laevis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (17), p.4495-4500</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Apr 24, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9e200da125d53379806985502f19a0908b90a303df73c180c9a726be3fd76783</citedby><cites>FETCH-LOGICAL-c443t-9e200da125d53379806985502f19a0908b90a303df73c180c9a726be3fd76783</cites><orcidid>0000-0002-1359-0076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508665$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508665$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29636418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Männikkö, Roope</creatorcontrib><creatorcontrib>Shenkarev, Zakhar O.</creatorcontrib><creatorcontrib>Thor, Michael G.</creatorcontrib><creatorcontrib>Berkut, Antonina A.</creatorcontrib><creatorcontrib>Myshkin, Mikhail Yu</creatorcontrib><creatorcontrib>Paramonov, Alexander S.</creatorcontrib><creatorcontrib>Kulbatskii, Dmitrii S.</creatorcontrib><creatorcontrib>Kuzmin, Dmitry A.</creatorcontrib><creatorcontrib>Castañeda, Marisol Sampedro</creatorcontrib><creatorcontrib>King, Louise</creatorcontrib><creatorcontrib>Wilson, Emma R.</creatorcontrib><creatorcontrib>Lyukmanova, Ekaterina N.</creatorcontrib><creatorcontrib>Kirpichnikov, Mikhail P.</creatorcontrib><creatorcontrib>Schorge, Stephanie</creatorcontrib><creatorcontrib>Bosmans, Frank</creatorcontrib><creatorcontrib>Hanna, Michael G.</creatorcontrib><creatorcontrib>Kullmann, Dimitri M.</creatorcontrib><creatorcontrib>Vassilevski, Alexander A.</creatorcontrib><title>Spider toxin inhibits gating pore currents underlying periodic paralysis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3–S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.</description><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Arginine</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Channel gating</subject><subject>Complex formation</subject><subject>Crabs</subject><subject>Domains</subject><subject>Electrostatic properties</subject><subject>Female</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Ion Channel Gating</subject><subject>Ion channels</subject><subject>Muscles</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - chemistry</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - metabolism</subject><subject>Neurotoxins</subject><subject>Neurotoxins - toxicity</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Paralysis</subject><subject>Paralysis, Hyperkalemic Periodic - genetics</subject><subject>Paralysis, Hyperkalemic Periodic - metabolism</subject><subject>Paralysis, Hyperkalemic Periodic - pathology</subject><subject>Pathogens</subject><subject>Protein Structure, Secondary</subject><subject>Skeletal muscle</subject><subject>Skeletal system</subject><subject>Sodium</subject><subject>Sodium channels (voltage-gated)</subject><subject>Spider Venoms - toxicity</subject><subject>Studies</subject><subject>Toxins</subject><subject>Xenopus laevis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtLAzEUhYMoWh9rV8qA67E3yeS1EaSoFQQXdh_SmUxNqcmYzIj996bW5-rCPd8993AQOsVwiUHQcedNusSCAJYMY7aDRhgULnmlYBeNAIgoZUWqA3SY0hIAFJOwjw6I4pRXWI7Q9KlzjY1FH96dL5x_dnPXp2JheucXRReiLeohRuvzcvCZXK0_BRtdaFxddCaa1Tq5dIz2WrNK9uRrHqHZ7c1sMi0fHu_uJ9cPZV1VtC-VJQCNwYQ1jFKhJHAlGQPSYmVAgZwrMBRo0wpaYwm1MoLwuaVtI7iQ9AhdbW27Yf5imzoHywF0F92LiWsdjNP_Fe-e9SK8aaZIpTDOBhdfBjG8Djb1ehmG6HNkTUApJSgFyNR4S9UxpBRt-_MBg940rzfN69_m88X532A__HfVGTjbAsvUh_ircwaSc0Y_AD7Iibg</recordid><startdate>20180424</startdate><enddate>20180424</enddate><creator>Männikkö, Roope</creator><creator>Shenkarev, Zakhar O.</creator><creator>Thor, Michael G.</creator><creator>Berkut, Antonina A.</creator><creator>Myshkin, Mikhail Yu</creator><creator>Paramonov, Alexander S.</creator><creator>Kulbatskii, Dmitrii S.</creator><creator>Kuzmin, Dmitry A.</creator><creator>Castañeda, Marisol Sampedro</creator><creator>King, Louise</creator><creator>Wilson, Emma R.</creator><creator>Lyukmanova, Ekaterina N.</creator><creator>Kirpichnikov, Mikhail P.</creator><creator>Schorge, Stephanie</creator><creator>Bosmans, Frank</creator><creator>Hanna, Michael G.</creator><creator>Kullmann, Dimitri M.</creator><creator>Vassilevski, Alexander A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1359-0076</orcidid></search><sort><creationdate>20180424</creationdate><title>Spider toxin inhibits gating pore currents underlying periodic paralysis</title><author>Männikkö, Roope ; Shenkarev, Zakhar O. ; Thor, Michael G. ; Berkut, Antonina A. ; Myshkin, Mikhail Yu ; Paramonov, Alexander S. ; Kulbatskii, Dmitrii S. ; Kuzmin, Dmitry A. ; Castañeda, Marisol Sampedro ; King, Louise ; Wilson, Emma R. ; Lyukmanova, Ekaterina N. ; Kirpichnikov, Mikhail P. ; Schorge, Stephanie ; Bosmans, Frank ; Hanna, Michael G. ; Kullmann, Dimitri M. ; Vassilevski, Alexander A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9e200da125d53379806985502f19a0908b90a303df73c180c9a726be3fd76783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Arginine</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Channel gating</topic><topic>Complex formation</topic><topic>Crabs</topic><topic>Domains</topic><topic>Electrostatic properties</topic><topic>Female</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Ion Channel Gating</topic><topic>Ion channels</topic><topic>Muscles</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - chemistry</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - metabolism</topic><topic>Neurotoxins</topic><topic>Neurotoxins - toxicity</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Paralysis</topic><topic>Paralysis, Hyperkalemic Periodic - genetics</topic><topic>Paralysis, Hyperkalemic Periodic - metabolism</topic><topic>Paralysis, Hyperkalemic Periodic - pathology</topic><topic>Pathogens</topic><topic>Protein Structure, Secondary</topic><topic>Skeletal muscle</topic><topic>Skeletal system</topic><topic>Sodium</topic><topic>Sodium channels (voltage-gated)</topic><topic>Spider Venoms - toxicity</topic><topic>Studies</topic><topic>Toxins</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Männikkö, Roope</creatorcontrib><creatorcontrib>Shenkarev, Zakhar O.</creatorcontrib><creatorcontrib>Thor, Michael G.</creatorcontrib><creatorcontrib>Berkut, Antonina A.</creatorcontrib><creatorcontrib>Myshkin, Mikhail Yu</creatorcontrib><creatorcontrib>Paramonov, Alexander S.</creatorcontrib><creatorcontrib>Kulbatskii, Dmitrii S.</creatorcontrib><creatorcontrib>Kuzmin, Dmitry A.</creatorcontrib><creatorcontrib>Castañeda, Marisol Sampedro</creatorcontrib><creatorcontrib>King, Louise</creatorcontrib><creatorcontrib>Wilson, Emma R.</creatorcontrib><creatorcontrib>Lyukmanova, Ekaterina N.</creatorcontrib><creatorcontrib>Kirpichnikov, Mikhail P.</creatorcontrib><creatorcontrib>Schorge, Stephanie</creatorcontrib><creatorcontrib>Bosmans, Frank</creatorcontrib><creatorcontrib>Hanna, Michael G.</creatorcontrib><creatorcontrib>Kullmann, Dimitri M.</creatorcontrib><creatorcontrib>Vassilevski, Alexander A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Männikkö, Roope</au><au>Shenkarev, Zakhar O.</au><au>Thor, Michael G.</au><au>Berkut, Antonina A.</au><au>Myshkin, Mikhail Yu</au><au>Paramonov, Alexander S.</au><au>Kulbatskii, Dmitrii S.</au><au>Kuzmin, Dmitry A.</au><au>Castañeda, Marisol Sampedro</au><au>King, Louise</au><au>Wilson, Emma R.</au><au>Lyukmanova, Ekaterina N.</au><au>Kirpichnikov, Mikhail P.</au><au>Schorge, Stephanie</au><au>Bosmans, Frank</au><au>Hanna, Michael G.</au><au>Kullmann, Dimitri M.</au><au>Vassilevski, Alexander A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spider toxin inhibits gating pore currents underlying periodic paralysis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-04-24</date><risdate>2018</risdate><volume>115</volume><issue>17</issue><spage>4495</spage><epage>4500</epage><pages>4495-4500</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3–S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29636418</pmid><doi>10.1073/pnas.1720185115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1359-0076</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (17), p.4495-4500 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924911 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Substitution Animals Arginine Binding sites Biological Sciences Channel gating Complex formation Crabs Domains Electrostatic properties Female HEK293 Cells Humans Hydrophobic surfaces Hydrophobicity Ion Channel Gating Ion channels Muscles Mutation Mutation, Missense NAV1.4 Voltage-Gated Sodium Channel - chemistry NAV1.4 Voltage-Gated Sodium Channel - genetics NAV1.4 Voltage-Gated Sodium Channel - metabolism Neurotoxins Neurotoxins - toxicity NMR Nuclear magnetic resonance Paralysis Paralysis, Hyperkalemic Periodic - genetics Paralysis, Hyperkalemic Periodic - metabolism Paralysis, Hyperkalemic Periodic - pathology Pathogens Protein Structure, Secondary Skeletal muscle Skeletal system Sodium Sodium channels (voltage-gated) Spider Venoms - toxicity Studies Toxins Xenopus laevis |
title | Spider toxin inhibits gating pore currents underlying periodic paralysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spider%20toxin%20inhibits%20gating%20pore%20currents%20underlying%20periodic%20paralysis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=M%C3%A4nnikk%C3%B6,%20Roope&rft.date=2018-04-24&rft.volume=115&rft.issue=17&rft.spage=4495&rft.epage=4500&rft.pages=4495-4500&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1720185115&rft_dat=%3Cjstor_pubme%3E26508665%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099973300&rft_id=info:pmid/29636418&rft_jstor_id=26508665&rfr_iscdi=true |