Spider toxin inhibits gating pore currents underlying periodic paralysis

Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-04, Vol.115 (17), p.4495-4500
Hauptverfasser: Männikkö, Roope, Shenkarev, Zakhar O., Thor, Michael G., Berkut, Antonina A., Myshkin, Mikhail Yu, Paramonov, Alexander S., Kulbatskii, Dmitrii S., Kuzmin, Dmitry A., Castañeda, Marisol Sampedro, King, Louise, Wilson, Emma R., Lyukmanova, Ekaterina N., Kirpichnikov, Mikhail P., Schorge, Stephanie, Bosmans, Frank, Hanna, Michael G., Kullmann, Dimitri M., Vassilevski, Alexander A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4500
container_issue 17
container_start_page 4495
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Männikkö, Roope
Shenkarev, Zakhar O.
Thor, Michael G.
Berkut, Antonina A.
Myshkin, Mikhail Yu
Paramonov, Alexander S.
Kulbatskii, Dmitrii S.
Kuzmin, Dmitry A.
Castañeda, Marisol Sampedro
King, Louise
Wilson, Emma R.
Lyukmanova, Ekaterina N.
Kirpichnikov, Mikhail P.
Schorge, Stephanie
Bosmans, Frank
Hanna, Michael G.
Kullmann, Dimitri M.
Vassilevski, Alexander A.
description Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3–S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.
doi_str_mv 10.1073/pnas.1720185115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508665</jstor_id><sourcerecordid>26508665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9e200da125d53379806985502f19a0908b90a303df73c180c9a726be3fd76783</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMoWh9rV8qA67E3yeS1EaSoFQQXdh_SmUxNqcmYzIj996bW5-rCPd8993AQOsVwiUHQcedNusSCAJYMY7aDRhgULnmlYBeNAIgoZUWqA3SY0hIAFJOwjw6I4pRXWI7Q9KlzjY1FH96dL5x_dnPXp2JheucXRReiLeohRuvzcvCZXK0_BRtdaFxddCaa1Tq5dIz2WrNK9uRrHqHZ7c1sMi0fHu_uJ9cPZV1VtC-VJQCNwYQ1jFKhJHAlGQPSYmVAgZwrMBRo0wpaYwm1MoLwuaVtI7iQ9AhdbW27Yf5imzoHywF0F92LiWsdjNP_Fe-e9SK8aaZIpTDOBhdfBjG8Djb1ehmG6HNkTUApJSgFyNR4S9UxpBRt-_MBg940rzfN69_m88X532A__HfVGTjbAsvUh_ircwaSc0Y_AD7Iibg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099973300</pqid></control><display><type>article</type><title>Spider toxin inhibits gating pore currents underlying periodic paralysis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Männikkö, Roope ; Shenkarev, Zakhar O. ; Thor, Michael G. ; Berkut, Antonina A. ; Myshkin, Mikhail Yu ; Paramonov, Alexander S. ; Kulbatskii, Dmitrii S. ; Kuzmin, Dmitry A. ; Castañeda, Marisol Sampedro ; King, Louise ; Wilson, Emma R. ; Lyukmanova, Ekaterina N. ; Kirpichnikov, Mikhail P. ; Schorge, Stephanie ; Bosmans, Frank ; Hanna, Michael G. ; Kullmann, Dimitri M. ; Vassilevski, Alexander A.</creator><creatorcontrib>Männikkö, Roope ; Shenkarev, Zakhar O. ; Thor, Michael G. ; Berkut, Antonina A. ; Myshkin, Mikhail Yu ; Paramonov, Alexander S. ; Kulbatskii, Dmitrii S. ; Kuzmin, Dmitry A. ; Castañeda, Marisol Sampedro ; King, Louise ; Wilson, Emma R. ; Lyukmanova, Ekaterina N. ; Kirpichnikov, Mikhail P. ; Schorge, Stephanie ; Bosmans, Frank ; Hanna, Michael G. ; Kullmann, Dimitri M. ; Vassilevski, Alexander A.</creatorcontrib><description>Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3–S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1720185115</identifier><identifier>PMID: 29636418</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Substitution ; Animals ; Arginine ; Binding sites ; Biological Sciences ; Channel gating ; Complex formation ; Crabs ; Domains ; Electrostatic properties ; Female ; HEK293 Cells ; Humans ; Hydrophobic surfaces ; Hydrophobicity ; Ion Channel Gating ; Ion channels ; Muscles ; Mutation ; Mutation, Missense ; NAV1.4 Voltage-Gated Sodium Channel - chemistry ; NAV1.4 Voltage-Gated Sodium Channel - genetics ; NAV1.4 Voltage-Gated Sodium Channel - metabolism ; Neurotoxins ; Neurotoxins - toxicity ; NMR ; Nuclear magnetic resonance ; Paralysis ; Paralysis, Hyperkalemic Periodic - genetics ; Paralysis, Hyperkalemic Periodic - metabolism ; Paralysis, Hyperkalemic Periodic - pathology ; Pathogens ; Protein Structure, Secondary ; Skeletal muscle ; Skeletal system ; Sodium ; Sodium channels (voltage-gated) ; Spider Venoms - toxicity ; Studies ; Toxins ; Xenopus laevis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (17), p.4495-4500</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Apr 24, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9e200da125d53379806985502f19a0908b90a303df73c180c9a726be3fd76783</citedby><cites>FETCH-LOGICAL-c443t-9e200da125d53379806985502f19a0908b90a303df73c180c9a726be3fd76783</cites><orcidid>0000-0002-1359-0076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508665$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508665$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29636418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Männikkö, Roope</creatorcontrib><creatorcontrib>Shenkarev, Zakhar O.</creatorcontrib><creatorcontrib>Thor, Michael G.</creatorcontrib><creatorcontrib>Berkut, Antonina A.</creatorcontrib><creatorcontrib>Myshkin, Mikhail Yu</creatorcontrib><creatorcontrib>Paramonov, Alexander S.</creatorcontrib><creatorcontrib>Kulbatskii, Dmitrii S.</creatorcontrib><creatorcontrib>Kuzmin, Dmitry A.</creatorcontrib><creatorcontrib>Castañeda, Marisol Sampedro</creatorcontrib><creatorcontrib>King, Louise</creatorcontrib><creatorcontrib>Wilson, Emma R.</creatorcontrib><creatorcontrib>Lyukmanova, Ekaterina N.</creatorcontrib><creatorcontrib>Kirpichnikov, Mikhail P.</creatorcontrib><creatorcontrib>Schorge, Stephanie</creatorcontrib><creatorcontrib>Bosmans, Frank</creatorcontrib><creatorcontrib>Hanna, Michael G.</creatorcontrib><creatorcontrib>Kullmann, Dimitri M.</creatorcontrib><creatorcontrib>Vassilevski, Alexander A.</creatorcontrib><title>Spider toxin inhibits gating pore currents underlying periodic paralysis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3–S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.</description><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Arginine</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Channel gating</subject><subject>Complex formation</subject><subject>Crabs</subject><subject>Domains</subject><subject>Electrostatic properties</subject><subject>Female</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Ion Channel Gating</subject><subject>Ion channels</subject><subject>Muscles</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - chemistry</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - metabolism</subject><subject>Neurotoxins</subject><subject>Neurotoxins - toxicity</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Paralysis</subject><subject>Paralysis, Hyperkalemic Periodic - genetics</subject><subject>Paralysis, Hyperkalemic Periodic - metabolism</subject><subject>Paralysis, Hyperkalemic Periodic - pathology</subject><subject>Pathogens</subject><subject>Protein Structure, Secondary</subject><subject>Skeletal muscle</subject><subject>Skeletal system</subject><subject>Sodium</subject><subject>Sodium channels (voltage-gated)</subject><subject>Spider Venoms - toxicity</subject><subject>Studies</subject><subject>Toxins</subject><subject>Xenopus laevis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtLAzEUhYMoWh9rV8qA67E3yeS1EaSoFQQXdh_SmUxNqcmYzIj996bW5-rCPd8993AQOsVwiUHQcedNusSCAJYMY7aDRhgULnmlYBeNAIgoZUWqA3SY0hIAFJOwjw6I4pRXWI7Q9KlzjY1FH96dL5x_dnPXp2JheucXRReiLeohRuvzcvCZXK0_BRtdaFxddCaa1Tq5dIz2WrNK9uRrHqHZ7c1sMi0fHu_uJ9cPZV1VtC-VJQCNwYQ1jFKhJHAlGQPSYmVAgZwrMBRo0wpaYwm1MoLwuaVtI7iQ9AhdbW27Yf5imzoHywF0F92LiWsdjNP_Fe-e9SK8aaZIpTDOBhdfBjG8Djb1ehmG6HNkTUApJSgFyNR4S9UxpBRt-_MBg940rzfN69_m88X532A__HfVGTjbAsvUh_ircwaSc0Y_AD7Iibg</recordid><startdate>20180424</startdate><enddate>20180424</enddate><creator>Männikkö, Roope</creator><creator>Shenkarev, Zakhar O.</creator><creator>Thor, Michael G.</creator><creator>Berkut, Antonina A.</creator><creator>Myshkin, Mikhail Yu</creator><creator>Paramonov, Alexander S.</creator><creator>Kulbatskii, Dmitrii S.</creator><creator>Kuzmin, Dmitry A.</creator><creator>Castañeda, Marisol Sampedro</creator><creator>King, Louise</creator><creator>Wilson, Emma R.</creator><creator>Lyukmanova, Ekaterina N.</creator><creator>Kirpichnikov, Mikhail P.</creator><creator>Schorge, Stephanie</creator><creator>Bosmans, Frank</creator><creator>Hanna, Michael G.</creator><creator>Kullmann, Dimitri M.</creator><creator>Vassilevski, Alexander A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1359-0076</orcidid></search><sort><creationdate>20180424</creationdate><title>Spider toxin inhibits gating pore currents underlying periodic paralysis</title><author>Männikkö, Roope ; Shenkarev, Zakhar O. ; Thor, Michael G. ; Berkut, Antonina A. ; Myshkin, Mikhail Yu ; Paramonov, Alexander S. ; Kulbatskii, Dmitrii S. ; Kuzmin, Dmitry A. ; Castañeda, Marisol Sampedro ; King, Louise ; Wilson, Emma R. ; Lyukmanova, Ekaterina N. ; Kirpichnikov, Mikhail P. ; Schorge, Stephanie ; Bosmans, Frank ; Hanna, Michael G. ; Kullmann, Dimitri M. ; Vassilevski, Alexander A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9e200da125d53379806985502f19a0908b90a303df73c180c9a726be3fd76783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Arginine</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Channel gating</topic><topic>Complex formation</topic><topic>Crabs</topic><topic>Domains</topic><topic>Electrostatic properties</topic><topic>Female</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Ion Channel Gating</topic><topic>Ion channels</topic><topic>Muscles</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - chemistry</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - metabolism</topic><topic>Neurotoxins</topic><topic>Neurotoxins - toxicity</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Paralysis</topic><topic>Paralysis, Hyperkalemic Periodic - genetics</topic><topic>Paralysis, Hyperkalemic Periodic - metabolism</topic><topic>Paralysis, Hyperkalemic Periodic - pathology</topic><topic>Pathogens</topic><topic>Protein Structure, Secondary</topic><topic>Skeletal muscle</topic><topic>Skeletal system</topic><topic>Sodium</topic><topic>Sodium channels (voltage-gated)</topic><topic>Spider Venoms - toxicity</topic><topic>Studies</topic><topic>Toxins</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Männikkö, Roope</creatorcontrib><creatorcontrib>Shenkarev, Zakhar O.</creatorcontrib><creatorcontrib>Thor, Michael G.</creatorcontrib><creatorcontrib>Berkut, Antonina A.</creatorcontrib><creatorcontrib>Myshkin, Mikhail Yu</creatorcontrib><creatorcontrib>Paramonov, Alexander S.</creatorcontrib><creatorcontrib>Kulbatskii, Dmitrii S.</creatorcontrib><creatorcontrib>Kuzmin, Dmitry A.</creatorcontrib><creatorcontrib>Castañeda, Marisol Sampedro</creatorcontrib><creatorcontrib>King, Louise</creatorcontrib><creatorcontrib>Wilson, Emma R.</creatorcontrib><creatorcontrib>Lyukmanova, Ekaterina N.</creatorcontrib><creatorcontrib>Kirpichnikov, Mikhail P.</creatorcontrib><creatorcontrib>Schorge, Stephanie</creatorcontrib><creatorcontrib>Bosmans, Frank</creatorcontrib><creatorcontrib>Hanna, Michael G.</creatorcontrib><creatorcontrib>Kullmann, Dimitri M.</creatorcontrib><creatorcontrib>Vassilevski, Alexander A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Männikkö, Roope</au><au>Shenkarev, Zakhar O.</au><au>Thor, Michael G.</au><au>Berkut, Antonina A.</au><au>Myshkin, Mikhail Yu</au><au>Paramonov, Alexander S.</au><au>Kulbatskii, Dmitrii S.</au><au>Kuzmin, Dmitry A.</au><au>Castañeda, Marisol Sampedro</au><au>King, Louise</au><au>Wilson, Emma R.</au><au>Lyukmanova, Ekaterina N.</au><au>Kirpichnikov, Mikhail P.</au><au>Schorge, Stephanie</au><au>Bosmans, Frank</au><au>Hanna, Michael G.</au><au>Kullmann, Dimitri M.</au><au>Vassilevski, Alexander A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spider toxin inhibits gating pore currents underlying periodic paralysis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-04-24</date><risdate>2018</risdate><volume>115</volume><issue>17</issue><spage>4495</spage><epage>4500</epage><pages>4495-4500</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3–S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29636418</pmid><doi>10.1073/pnas.1720185115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1359-0076</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (17), p.4495-4500
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924911
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Substitution
Animals
Arginine
Binding sites
Biological Sciences
Channel gating
Complex formation
Crabs
Domains
Electrostatic properties
Female
HEK293 Cells
Humans
Hydrophobic surfaces
Hydrophobicity
Ion Channel Gating
Ion channels
Muscles
Mutation
Mutation, Missense
NAV1.4 Voltage-Gated Sodium Channel - chemistry
NAV1.4 Voltage-Gated Sodium Channel - genetics
NAV1.4 Voltage-Gated Sodium Channel - metabolism
Neurotoxins
Neurotoxins - toxicity
NMR
Nuclear magnetic resonance
Paralysis
Paralysis, Hyperkalemic Periodic - genetics
Paralysis, Hyperkalemic Periodic - metabolism
Paralysis, Hyperkalemic Periodic - pathology
Pathogens
Protein Structure, Secondary
Skeletal muscle
Skeletal system
Sodium
Sodium channels (voltage-gated)
Spider Venoms - toxicity
Studies
Toxins
Xenopus laevis
title Spider toxin inhibits gating pore currents underlying periodic paralysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spider%20toxin%20inhibits%20gating%20pore%20currents%20underlying%20periodic%20paralysis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=M%C3%A4nnikk%C3%B6,%20Roope&rft.date=2018-04-24&rft.volume=115&rft.issue=17&rft.spage=4495&rft.epage=4500&rft.pages=4495-4500&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1720185115&rft_dat=%3Cjstor_pubme%3E26508665%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099973300&rft_id=info:pmid/29636418&rft_jstor_id=26508665&rfr_iscdi=true