Individually addressable and dynamic DNA gates for multiplexed cell sorting

The ability to analyze and isolate cells based on the expression of specific surface markers has increased our understanding of cell biology and produced numerous applications for biomedicine. However, established cell-sorting platforms rely on labels that are limited in number due to biophysical co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-04, Vol.115 (17), p.4357-4362
Hauptverfasser: Dahotre, Shreyas N., Chang, Yun Min, Wieland, Andreas, Stammen, Samantha R., Kwong, Gabriel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4362
container_issue 17
container_start_page 4357
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Dahotre, Shreyas N.
Chang, Yun Min
Wieland, Andreas
Stammen, Samantha R.
Kwong, Gabriel A.
description The ability to analyze and isolate cells based on the expression of specific surface markers has increased our understanding of cell biology and produced numerous applications for biomedicine. However, established cell-sorting platforms rely on labels that are limited in number due to biophysical constraints, such as overlapping emission spectra of fluorophores in FACS. Here, we establish a framework built on a system of orthogonal and extensible DNA gates for multiplexed cell sorting. These DNA gates label target cell populations by antibodies to allow magnetic bead isolation en masse and then selectively unlock by strand displacement to sort cells. We show that DNA gated sorting (DGS) is triggered to completion within minutes on the surface of cells and achieves target cell purity, viability, and yield equivalent to that of commercial magnetic sorting kits. We demonstrate multiplexed sorting of three distinct immune cell populations (CD8⁺, CD4⁺, and CD19⁺) from mouse splenocytes to high purity and show that recovered CD8⁺ T cells retain proliferative potential and target cellkilling activity. To broaden the utility of this platform, we implement a double positive sorting scheme using DNA gates on peptide-MHC tetramers to isolate antigen-specific CD8⁺ T cells from mice infected with lymphocytic choriomeningitis virus (LCMV). DGS can potentially be expanded with fewer biophysical constraints to large families of DNA gates for applications that require analysis of complex cell populations, such as host immune responses to disease.
doi_str_mv 10.1073/pnas.1714820115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508642</jstor_id><sourcerecordid>26508642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-4153418bd13015a5425db08b54d335df71e092fc97a63b4057b469da1cc22ecf3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhzAkUqRcuaWf8kcQXpKp8Va3KBc6WYzuLV4692EnF_nuy2tIPTnOYZ17Nq4eQtwinCC0720ZdTrFF3lFAFM_ICkFi3XAJz8kKgLZ1xyk_Iq9K2QCAFB28JEdUNoyihBW5uozW33o76xB2lbY2u1J0H1ylo63sLurRm-rTzXm11pMr1ZByNc5h8tvg_jhbGRdCVVKefFy_Ji8GHYp7czePyc8vn39cfKuvv3-9vDi_rg3nbKo5Csax6y0yQKEFp8L20PWCW8aEHVp0IOlgZKsb1nMQbc8baTUaQ6kzAzsmHw-527kfnTUuTlkHtc1-1Hmnkvbq6Sb6X2qdbpWQlHcdXQI-3AXk9Ht2ZVKjL_smOro0F0WBspZKRL6gJ_-hmzTnuNRbKCllKznbU2cHyuRUSnbD_TMIai9K7UWpB1HLxfvHHe75f2YW4N0B2JQp5Yd9I6BrOGV_Ae54mJM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099979434</pqid></control><display><type>article</type><title>Individually addressable and dynamic DNA gates for multiplexed cell sorting</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dahotre, Shreyas N. ; Chang, Yun Min ; Wieland, Andreas ; Stammen, Samantha R. ; Kwong, Gabriel A.</creator><creatorcontrib>Dahotre, Shreyas N. ; Chang, Yun Min ; Wieland, Andreas ; Stammen, Samantha R. ; Kwong, Gabriel A.</creatorcontrib><description>The ability to analyze and isolate cells based on the expression of specific surface markers has increased our understanding of cell biology and produced numerous applications for biomedicine. However, established cell-sorting platforms rely on labels that are limited in number due to biophysical constraints, such as overlapping emission spectra of fluorophores in FACS. Here, we establish a framework built on a system of orthogonal and extensible DNA gates for multiplexed cell sorting. These DNA gates label target cell populations by antibodies to allow magnetic bead isolation en masse and then selectively unlock by strand displacement to sort cells. We show that DNA gated sorting (DGS) is triggered to completion within minutes on the surface of cells and achieves target cell purity, viability, and yield equivalent to that of commercial magnetic sorting kits. We demonstrate multiplexed sorting of three distinct immune cell populations (CD8⁺, CD4⁺, and CD19⁺) from mouse splenocytes to high purity and show that recovered CD8⁺ T cells retain proliferative potential and target cellkilling activity. To broaden the utility of this platform, we implement a double positive sorting scheme using DNA gates on peptide-MHC tetramers to isolate antigen-specific CD8⁺ T cells from mice infected with lymphocytic choriomeningitis virus (LCMV). DGS can potentially be expanded with fewer biophysical constraints to large families of DNA gates for applications that require analysis of complex cell populations, such as host immune responses to disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1714820115</identifier><identifier>PMID: 29632190</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antibodies ; Biological Sciences ; CD19 antigen ; CD4 antigen ; CD4-Positive T-Lymphocytes - immunology ; CD4-Positive T-Lymphocytes - pathology ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - pathology ; Cell Proliferation ; Chemical compounds ; Deoxyribonucleic acid ; DNA ; Emission spectra ; Flow cytometry ; Flow Cytometry - methods ; Fluorescence ; Fluorophores ; Gates ; HIV ; Human immunodeficiency virus ; Immune system ; Lymphocytes ; Lymphocytes T ; Lymphocytic Choriomeningitis - immunology ; Lymphocytic Choriomeningitis - pathology ; Lymphocytic choriomeningitis virus - immunology ; Major histocompatibility complex ; Mice ; Multiplexing ; Nanostructured materials ; Physical Sciences ; Populations ; Purity ; Splenocytes ; Surface markers ; T cell receptors ; Viability ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (17), p.4357-4362</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Apr 24, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-4153418bd13015a5425db08b54d335df71e092fc97a63b4057b469da1cc22ecf3</citedby><cites>FETCH-LOGICAL-c443t-4153418bd13015a5425db08b54d335df71e092fc97a63b4057b469da1cc22ecf3</cites><orcidid>0000-0002-8766-3768 ; 0000-0001-9648-7922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508642$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508642$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29632190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahotre, Shreyas N.</creatorcontrib><creatorcontrib>Chang, Yun Min</creatorcontrib><creatorcontrib>Wieland, Andreas</creatorcontrib><creatorcontrib>Stammen, Samantha R.</creatorcontrib><creatorcontrib>Kwong, Gabriel A.</creatorcontrib><title>Individually addressable and dynamic DNA gates for multiplexed cell sorting</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The ability to analyze and isolate cells based on the expression of specific surface markers has increased our understanding of cell biology and produced numerous applications for biomedicine. However, established cell-sorting platforms rely on labels that are limited in number due to biophysical constraints, such as overlapping emission spectra of fluorophores in FACS. Here, we establish a framework built on a system of orthogonal and extensible DNA gates for multiplexed cell sorting. These DNA gates label target cell populations by antibodies to allow magnetic bead isolation en masse and then selectively unlock by strand displacement to sort cells. We show that DNA gated sorting (DGS) is triggered to completion within minutes on the surface of cells and achieves target cell purity, viability, and yield equivalent to that of commercial magnetic sorting kits. We demonstrate multiplexed sorting of three distinct immune cell populations (CD8⁺, CD4⁺, and CD19⁺) from mouse splenocytes to high purity and show that recovered CD8⁺ T cells retain proliferative potential and target cellkilling activity. To broaden the utility of this platform, we implement a double positive sorting scheme using DNA gates on peptide-MHC tetramers to isolate antigen-specific CD8⁺ T cells from mice infected with lymphocytic choriomeningitis virus (LCMV). DGS can potentially be expanded with fewer biophysical constraints to large families of DNA gates for applications that require analysis of complex cell populations, such as host immune responses to disease.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>CD19 antigen</subject><subject>CD4 antigen</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>CD4-Positive T-Lymphocytes - pathology</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - pathology</subject><subject>Cell Proliferation</subject><subject>Chemical compounds</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Emission spectra</subject><subject>Flow cytometry</subject><subject>Flow Cytometry - methods</subject><subject>Fluorescence</subject><subject>Fluorophores</subject><subject>Gates</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Immune system</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphocytic Choriomeningitis - immunology</subject><subject>Lymphocytic Choriomeningitis - pathology</subject><subject>Lymphocytic choriomeningitis virus - immunology</subject><subject>Major histocompatibility complex</subject><subject>Mice</subject><subject>Multiplexing</subject><subject>Nanostructured materials</subject><subject>Physical Sciences</subject><subject>Populations</subject><subject>Purity</subject><subject>Splenocytes</subject><subject>Surface markers</subject><subject>T cell receptors</subject><subject>Viability</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhzAkUqRcuaWf8kcQXpKp8Va3KBc6WYzuLV4692EnF_nuy2tIPTnOYZ17Nq4eQtwinCC0720ZdTrFF3lFAFM_ICkFi3XAJz8kKgLZ1xyk_Iq9K2QCAFB28JEdUNoyihBW5uozW33o76xB2lbY2u1J0H1ylo63sLurRm-rTzXm11pMr1ZByNc5h8tvg_jhbGRdCVVKefFy_Ji8GHYp7czePyc8vn39cfKuvv3-9vDi_rg3nbKo5Csax6y0yQKEFp8L20PWCW8aEHVp0IOlgZKsb1nMQbc8baTUaQ6kzAzsmHw-527kfnTUuTlkHtc1-1Hmnkvbq6Sb6X2qdbpWQlHcdXQI-3AXk9Ht2ZVKjL_smOro0F0WBspZKRL6gJ_-hmzTnuNRbKCllKznbU2cHyuRUSnbD_TMIai9K7UWpB1HLxfvHHe75f2YW4N0B2JQp5Yd9I6BrOGV_Ae54mJM</recordid><startdate>20180424</startdate><enddate>20180424</enddate><creator>Dahotre, Shreyas N.</creator><creator>Chang, Yun Min</creator><creator>Wieland, Andreas</creator><creator>Stammen, Samantha R.</creator><creator>Kwong, Gabriel A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8766-3768</orcidid><orcidid>https://orcid.org/0000-0001-9648-7922</orcidid></search><sort><creationdate>20180424</creationdate><title>Individually addressable and dynamic DNA gates for multiplexed cell sorting</title><author>Dahotre, Shreyas N. ; Chang, Yun Min ; Wieland, Andreas ; Stammen, Samantha R. ; Kwong, Gabriel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-4153418bd13015a5425db08b54d335df71e092fc97a63b4057b469da1cc22ecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>CD19 antigen</topic><topic>CD4 antigen</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>CD4-Positive T-Lymphocytes - pathology</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - pathology</topic><topic>Cell Proliferation</topic><topic>Chemical compounds</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Emission spectra</topic><topic>Flow cytometry</topic><topic>Flow Cytometry - methods</topic><topic>Fluorescence</topic><topic>Fluorophores</topic><topic>Gates</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Immune system</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphocytic Choriomeningitis - immunology</topic><topic>Lymphocytic Choriomeningitis - pathology</topic><topic>Lymphocytic choriomeningitis virus - immunology</topic><topic>Major histocompatibility complex</topic><topic>Mice</topic><topic>Multiplexing</topic><topic>Nanostructured materials</topic><topic>Physical Sciences</topic><topic>Populations</topic><topic>Purity</topic><topic>Splenocytes</topic><topic>Surface markers</topic><topic>T cell receptors</topic><topic>Viability</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahotre, Shreyas N.</creatorcontrib><creatorcontrib>Chang, Yun Min</creatorcontrib><creatorcontrib>Wieland, Andreas</creatorcontrib><creatorcontrib>Stammen, Samantha R.</creatorcontrib><creatorcontrib>Kwong, Gabriel A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahotre, Shreyas N.</au><au>Chang, Yun Min</au><au>Wieland, Andreas</au><au>Stammen, Samantha R.</au><au>Kwong, Gabriel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individually addressable and dynamic DNA gates for multiplexed cell sorting</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-04-24</date><risdate>2018</risdate><volume>115</volume><issue>17</issue><spage>4357</spage><epage>4362</epage><pages>4357-4362</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The ability to analyze and isolate cells based on the expression of specific surface markers has increased our understanding of cell biology and produced numerous applications for biomedicine. However, established cell-sorting platforms rely on labels that are limited in number due to biophysical constraints, such as overlapping emission spectra of fluorophores in FACS. Here, we establish a framework built on a system of orthogonal and extensible DNA gates for multiplexed cell sorting. These DNA gates label target cell populations by antibodies to allow magnetic bead isolation en masse and then selectively unlock by strand displacement to sort cells. We show that DNA gated sorting (DGS) is triggered to completion within minutes on the surface of cells and achieves target cell purity, viability, and yield equivalent to that of commercial magnetic sorting kits. We demonstrate multiplexed sorting of three distinct immune cell populations (CD8⁺, CD4⁺, and CD19⁺) from mouse splenocytes to high purity and show that recovered CD8⁺ T cells retain proliferative potential and target cellkilling activity. To broaden the utility of this platform, we implement a double positive sorting scheme using DNA gates on peptide-MHC tetramers to isolate antigen-specific CD8⁺ T cells from mice infected with lymphocytic choriomeningitis virus (LCMV). DGS can potentially be expanded with fewer biophysical constraints to large families of DNA gates for applications that require analysis of complex cell populations, such as host immune responses to disease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29632190</pmid><doi>10.1073/pnas.1714820115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8766-3768</orcidid><orcidid>https://orcid.org/0000-0001-9648-7922</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (17), p.4357-4362
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924882
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Antibodies
Biological Sciences
CD19 antigen
CD4 antigen
CD4-Positive T-Lymphocytes - immunology
CD4-Positive T-Lymphocytes - pathology
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - pathology
Cell Proliferation
Chemical compounds
Deoxyribonucleic acid
DNA
Emission spectra
Flow cytometry
Flow Cytometry - methods
Fluorescence
Fluorophores
Gates
HIV
Human immunodeficiency virus
Immune system
Lymphocytes
Lymphocytes T
Lymphocytic Choriomeningitis - immunology
Lymphocytic Choriomeningitis - pathology
Lymphocytic choriomeningitis virus - immunology
Major histocompatibility complex
Mice
Multiplexing
Nanostructured materials
Physical Sciences
Populations
Purity
Splenocytes
Surface markers
T cell receptors
Viability
Viruses
title Individually addressable and dynamic DNA gates for multiplexed cell sorting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individually%20addressable%20and%20dynamic%20DNA%20gates%20for%20multiplexed%20cell%20sorting&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dahotre,%20Shreyas%20N.&rft.date=2018-04-24&rft.volume=115&rft.issue=17&rft.spage=4357&rft.epage=4362&rft.pages=4357-4362&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1714820115&rft_dat=%3Cjstor_pubme%3E26508642%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099979434&rft_id=info:pmid/29632190&rft_jstor_id=26508642&rfr_iscdi=true