Individually addressable and dynamic DNA gates for multiplexed cell sorting
The ability to analyze and isolate cells based on the expression of specific surface markers has increased our understanding of cell biology and produced numerous applications for biomedicine. However, established cell-sorting platforms rely on labels that are limited in number due to biophysical co...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-04, Vol.115 (17), p.4357-4362 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4362 |
---|---|
container_issue | 17 |
container_start_page | 4357 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Dahotre, Shreyas N. Chang, Yun Min Wieland, Andreas Stammen, Samantha R. Kwong, Gabriel A. |
description | The ability to analyze and isolate cells based on the expression of specific surface markers has increased our understanding of cell biology and produced numerous applications for biomedicine. However, established cell-sorting platforms rely on labels that are limited in number due to biophysical constraints, such as overlapping emission spectra of fluorophores in FACS. Here, we establish a framework built on a system of orthogonal and extensible DNA gates for multiplexed cell sorting. These DNA gates label target cell populations by antibodies to allow magnetic bead isolation en masse and then selectively unlock by strand displacement to sort cells. We show that DNA gated sorting (DGS) is triggered to completion within minutes on the surface of cells and achieves target cell purity, viability, and yield equivalent to that of commercial magnetic sorting kits. We demonstrate multiplexed sorting of three distinct immune cell populations (CD8⁺, CD4⁺, and CD19⁺) from mouse splenocytes to high purity and show that recovered CD8⁺ T cells retain proliferative potential and target cellkilling activity. To broaden the utility of this platform, we implement a double positive sorting scheme using DNA gates on peptide-MHC tetramers to isolate antigen-specific CD8⁺ T cells from mice infected with lymphocytic choriomeningitis virus (LCMV). DGS can potentially be expanded with fewer biophysical constraints to large families of DNA gates for applications that require analysis of complex cell populations, such as host immune responses to disease. |
doi_str_mv | 10.1073/pnas.1714820115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508642</jstor_id><sourcerecordid>26508642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-4153418bd13015a5425db08b54d335df71e092fc97a63b4057b469da1cc22ecf3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhzAkUqRcuaWf8kcQXpKp8Va3KBc6WYzuLV4692EnF_nuy2tIPTnOYZ17Nq4eQtwinCC0720ZdTrFF3lFAFM_ICkFi3XAJz8kKgLZ1xyk_Iq9K2QCAFB28JEdUNoyihBW5uozW33o76xB2lbY2u1J0H1ylo63sLurRm-rTzXm11pMr1ZByNc5h8tvg_jhbGRdCVVKefFy_Ji8GHYp7czePyc8vn39cfKuvv3-9vDi_rg3nbKo5Csax6y0yQKEFp8L20PWCW8aEHVp0IOlgZKsb1nMQbc8baTUaQ6kzAzsmHw-527kfnTUuTlkHtc1-1Hmnkvbq6Sb6X2qdbpWQlHcdXQI-3AXk9Ht2ZVKjL_smOro0F0WBspZKRL6gJ_-hmzTnuNRbKCllKznbU2cHyuRUSnbD_TMIai9K7UWpB1HLxfvHHe75f2YW4N0B2JQp5Yd9I6BrOGV_Ae54mJM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099979434</pqid></control><display><type>article</type><title>Individually addressable and dynamic DNA gates for multiplexed cell sorting</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dahotre, Shreyas N. ; Chang, Yun Min ; Wieland, Andreas ; Stammen, Samantha R. ; Kwong, Gabriel A.</creator><creatorcontrib>Dahotre, Shreyas N. ; Chang, Yun Min ; Wieland, Andreas ; Stammen, Samantha R. ; Kwong, Gabriel A.</creatorcontrib><description>The ability to analyze and isolate cells based on the expression of specific surface markers has increased our understanding of cell biology and produced numerous applications for biomedicine. However, established cell-sorting platforms rely on labels that are limited in number due to biophysical constraints, such as overlapping emission spectra of fluorophores in FACS. Here, we establish a framework built on a system of orthogonal and extensible DNA gates for multiplexed cell sorting. These DNA gates label target cell populations by antibodies to allow magnetic bead isolation en masse and then selectively unlock by strand displacement to sort cells. We show that DNA gated sorting (DGS) is triggered to completion within minutes on the surface of cells and achieves target cell purity, viability, and yield equivalent to that of commercial magnetic sorting kits. We demonstrate multiplexed sorting of three distinct immune cell populations (CD8⁺, CD4⁺, and CD19⁺) from mouse splenocytes to high purity and show that recovered CD8⁺ T cells retain proliferative potential and target cellkilling activity. To broaden the utility of this platform, we implement a double positive sorting scheme using DNA gates on peptide-MHC tetramers to isolate antigen-specific CD8⁺ T cells from mice infected with lymphocytic choriomeningitis virus (LCMV). DGS can potentially be expanded with fewer biophysical constraints to large families of DNA gates for applications that require analysis of complex cell populations, such as host immune responses to disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1714820115</identifier><identifier>PMID: 29632190</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antibodies ; Biological Sciences ; CD19 antigen ; CD4 antigen ; CD4-Positive T-Lymphocytes - immunology ; CD4-Positive T-Lymphocytes - pathology ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - pathology ; Cell Proliferation ; Chemical compounds ; Deoxyribonucleic acid ; DNA ; Emission spectra ; Flow cytometry ; Flow Cytometry - methods ; Fluorescence ; Fluorophores ; Gates ; HIV ; Human immunodeficiency virus ; Immune system ; Lymphocytes ; Lymphocytes T ; Lymphocytic Choriomeningitis - immunology ; Lymphocytic Choriomeningitis - pathology ; Lymphocytic choriomeningitis virus - immunology ; Major histocompatibility complex ; Mice ; Multiplexing ; Nanostructured materials ; Physical Sciences ; Populations ; Purity ; Splenocytes ; Surface markers ; T cell receptors ; Viability ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (17), p.4357-4362</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Apr 24, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-4153418bd13015a5425db08b54d335df71e092fc97a63b4057b469da1cc22ecf3</citedby><cites>FETCH-LOGICAL-c443t-4153418bd13015a5425db08b54d335df71e092fc97a63b4057b469da1cc22ecf3</cites><orcidid>0000-0002-8766-3768 ; 0000-0001-9648-7922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508642$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508642$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29632190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahotre, Shreyas N.</creatorcontrib><creatorcontrib>Chang, Yun Min</creatorcontrib><creatorcontrib>Wieland, Andreas</creatorcontrib><creatorcontrib>Stammen, Samantha R.</creatorcontrib><creatorcontrib>Kwong, Gabriel A.</creatorcontrib><title>Individually addressable and dynamic DNA gates for multiplexed cell sorting</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The ability to analyze and isolate cells based on the expression of specific surface markers has increased our understanding of cell biology and produced numerous applications for biomedicine. However, established cell-sorting platforms rely on labels that are limited in number due to biophysical constraints, such as overlapping emission spectra of fluorophores in FACS. Here, we establish a framework built on a system of orthogonal and extensible DNA gates for multiplexed cell sorting. These DNA gates label target cell populations by antibodies to allow magnetic bead isolation en masse and then selectively unlock by strand displacement to sort cells. We show that DNA gated sorting (DGS) is triggered to completion within minutes on the surface of cells and achieves target cell purity, viability, and yield equivalent to that of commercial magnetic sorting kits. We demonstrate multiplexed sorting of three distinct immune cell populations (CD8⁺, CD4⁺, and CD19⁺) from mouse splenocytes to high purity and show that recovered CD8⁺ T cells retain proliferative potential and target cellkilling activity. To broaden the utility of this platform, we implement a double positive sorting scheme using DNA gates on peptide-MHC tetramers to isolate antigen-specific CD8⁺ T cells from mice infected with lymphocytic choriomeningitis virus (LCMV). DGS can potentially be expanded with fewer biophysical constraints to large families of DNA gates for applications that require analysis of complex cell populations, such as host immune responses to disease.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>CD19 antigen</subject><subject>CD4 antigen</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>CD4-Positive T-Lymphocytes - pathology</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - pathology</subject><subject>Cell Proliferation</subject><subject>Chemical compounds</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Emission spectra</subject><subject>Flow cytometry</subject><subject>Flow Cytometry - methods</subject><subject>Fluorescence</subject><subject>Fluorophores</subject><subject>Gates</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Immune system</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphocytic Choriomeningitis - immunology</subject><subject>Lymphocytic Choriomeningitis - pathology</subject><subject>Lymphocytic choriomeningitis virus - immunology</subject><subject>Major histocompatibility complex</subject><subject>Mice</subject><subject>Multiplexing</subject><subject>Nanostructured materials</subject><subject>Physical Sciences</subject><subject>Populations</subject><subject>Purity</subject><subject>Splenocytes</subject><subject>Surface markers</subject><subject>T cell receptors</subject><subject>Viability</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhzAkUqRcuaWf8kcQXpKp8Va3KBc6WYzuLV4692EnF_nuy2tIPTnOYZ17Nq4eQtwinCC0720ZdTrFF3lFAFM_ICkFi3XAJz8kKgLZ1xyk_Iq9K2QCAFB28JEdUNoyihBW5uozW33o76xB2lbY2u1J0H1ylo63sLurRm-rTzXm11pMr1ZByNc5h8tvg_jhbGRdCVVKefFy_Ji8GHYp7czePyc8vn39cfKuvv3-9vDi_rg3nbKo5Csax6y0yQKEFp8L20PWCW8aEHVp0IOlgZKsb1nMQbc8baTUaQ6kzAzsmHw-527kfnTUuTlkHtc1-1Hmnkvbq6Sb6X2qdbpWQlHcdXQI-3AXk9Ht2ZVKjL_smOro0F0WBspZKRL6gJ_-hmzTnuNRbKCllKznbU2cHyuRUSnbD_TMIai9K7UWpB1HLxfvHHe75f2YW4N0B2JQp5Yd9I6BrOGV_Ae54mJM</recordid><startdate>20180424</startdate><enddate>20180424</enddate><creator>Dahotre, Shreyas N.</creator><creator>Chang, Yun Min</creator><creator>Wieland, Andreas</creator><creator>Stammen, Samantha R.</creator><creator>Kwong, Gabriel A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8766-3768</orcidid><orcidid>https://orcid.org/0000-0001-9648-7922</orcidid></search><sort><creationdate>20180424</creationdate><title>Individually addressable and dynamic DNA gates for multiplexed cell sorting</title><author>Dahotre, Shreyas N. ; Chang, Yun Min ; Wieland, Andreas ; Stammen, Samantha R. ; Kwong, Gabriel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-4153418bd13015a5425db08b54d335df71e092fc97a63b4057b469da1cc22ecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>CD19 antigen</topic><topic>CD4 antigen</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>CD4-Positive T-Lymphocytes - pathology</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - pathology</topic><topic>Cell Proliferation</topic><topic>Chemical compounds</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Emission spectra</topic><topic>Flow cytometry</topic><topic>Flow Cytometry - methods</topic><topic>Fluorescence</topic><topic>Fluorophores</topic><topic>Gates</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Immune system</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphocytic Choriomeningitis - immunology</topic><topic>Lymphocytic Choriomeningitis - pathology</topic><topic>Lymphocytic choriomeningitis virus - immunology</topic><topic>Major histocompatibility complex</topic><topic>Mice</topic><topic>Multiplexing</topic><topic>Nanostructured materials</topic><topic>Physical Sciences</topic><topic>Populations</topic><topic>Purity</topic><topic>Splenocytes</topic><topic>Surface markers</topic><topic>T cell receptors</topic><topic>Viability</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahotre, Shreyas N.</creatorcontrib><creatorcontrib>Chang, Yun Min</creatorcontrib><creatorcontrib>Wieland, Andreas</creatorcontrib><creatorcontrib>Stammen, Samantha R.</creatorcontrib><creatorcontrib>Kwong, Gabriel A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahotre, Shreyas N.</au><au>Chang, Yun Min</au><au>Wieland, Andreas</au><au>Stammen, Samantha R.</au><au>Kwong, Gabriel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individually addressable and dynamic DNA gates for multiplexed cell sorting</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-04-24</date><risdate>2018</risdate><volume>115</volume><issue>17</issue><spage>4357</spage><epage>4362</epage><pages>4357-4362</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The ability to analyze and isolate cells based on the expression of specific surface markers has increased our understanding of cell biology and produced numerous applications for biomedicine. However, established cell-sorting platforms rely on labels that are limited in number due to biophysical constraints, such as overlapping emission spectra of fluorophores in FACS. Here, we establish a framework built on a system of orthogonal and extensible DNA gates for multiplexed cell sorting. These DNA gates label target cell populations by antibodies to allow magnetic bead isolation en masse and then selectively unlock by strand displacement to sort cells. We show that DNA gated sorting (DGS) is triggered to completion within minutes on the surface of cells and achieves target cell purity, viability, and yield equivalent to that of commercial magnetic sorting kits. We demonstrate multiplexed sorting of three distinct immune cell populations (CD8⁺, CD4⁺, and CD19⁺) from mouse splenocytes to high purity and show that recovered CD8⁺ T cells retain proliferative potential and target cellkilling activity. To broaden the utility of this platform, we implement a double positive sorting scheme using DNA gates on peptide-MHC tetramers to isolate antigen-specific CD8⁺ T cells from mice infected with lymphocytic choriomeningitis virus (LCMV). DGS can potentially be expanded with fewer biophysical constraints to large families of DNA gates for applications that require analysis of complex cell populations, such as host immune responses to disease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29632190</pmid><doi>10.1073/pnas.1714820115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8766-3768</orcidid><orcidid>https://orcid.org/0000-0001-9648-7922</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (17), p.4357-4362 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924882 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Antibodies Biological Sciences CD19 antigen CD4 antigen CD4-Positive T-Lymphocytes - immunology CD4-Positive T-Lymphocytes - pathology CD8 antigen CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - pathology Cell Proliferation Chemical compounds Deoxyribonucleic acid DNA Emission spectra Flow cytometry Flow Cytometry - methods Fluorescence Fluorophores Gates HIV Human immunodeficiency virus Immune system Lymphocytes Lymphocytes T Lymphocytic Choriomeningitis - immunology Lymphocytic Choriomeningitis - pathology Lymphocytic choriomeningitis virus - immunology Major histocompatibility complex Mice Multiplexing Nanostructured materials Physical Sciences Populations Purity Splenocytes Surface markers T cell receptors Viability Viruses |
title | Individually addressable and dynamic DNA gates for multiplexed cell sorting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individually%20addressable%20and%20dynamic%20DNA%20gates%20for%20multiplexed%20cell%20sorting&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dahotre,%20Shreyas%20N.&rft.date=2018-04-24&rft.volume=115&rft.issue=17&rft.spage=4357&rft.epage=4362&rft.pages=4357-4362&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1714820115&rft_dat=%3Cjstor_pubme%3E26508642%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099979434&rft_id=info:pmid/29632190&rft_jstor_id=26508642&rfr_iscdi=true |