Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence
REV-ERBs, nuclear hormone receptors that regulate transcription as part of the circadian clock cell machinery, inhibit autophagy and lipogenesis in premalignant and malignant cells and impair tumour growth in vivo . Tumours restrained by REV-ERBs The circadian clock regulates many of the physiologic...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-01, Vol.553 (7688), p.351-355 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 7688 |
container_start_page | 351 |
container_title | Nature (London) |
container_volume | 553 |
creator | Sulli, Gabriele Rommel, Amy Wang, Xiaojie Kolar, Matthew J. Puca, Francesca Saghatelian, Alan Plikus, Maksim V. Verma, Inder M. Panda, Satchidananda |
description | REV-ERBs, nuclear hormone receptors that regulate transcription as part of the circadian clock cell machinery, inhibit autophagy and lipogenesis in premalignant and malignant cells and impair tumour growth
in vivo
.
Tumours restrained by REV-ERBs
The circadian clock regulates many of the physiological functions of an organism. Additionally, links between the circadian clock machinery and cancer have been demonstrated. Gabriele Sulli
et al
. have explored this link further by unravelling the functions of REV-ERBs. These nuclear hormone receptors regulate transcription and are an essential component of the circadian clock. Treatment of cancer cells with REV-ERB agonists results in cell death, through inhibition of autophagy and
de novo
lipogenesis. The agonists also impaired tumour growth
in vivo
.
The circadian clock imposes daily rhythms in cell proliferation, metabolism, inflammation and DNA damage response
1
,
2
. Perturbations of these processes are hallmarks of cancer
3
and chronic circadian rhythm disruption predisposes individuals to tumour development
1
,
4
. This raises the hypothesis that pharmacological modulation of the circadian machinery may be an effective therapeutic strategy for combating cancer. REV-ERBs, the nuclear hormone receptors REV-ERBα (also known as NR1D1) and REV-ERBβ (also known as NR1D2), are essential components of the circadian clock
5
,
6
. Here we show that two agonists of REV-ERBs—SR9009 and SR9011—are specifically lethal to cancer cells and oncogene-induced senescent cells, including melanocytic naevi, and have no effect on the viability of normal cells or tissues. The anticancer activity of SR9009 and SR9011 affects a number of oncogenic drivers (such as HRAS, BRAF, PIK3CA and others) and persists in the absence of p53 and under hypoxic conditions. The regulation of autophagy and
de novo
lipogenesis by SR9009 and SR9011 has a critical role in evoking an apoptotic response in malignant cells. Notably, the selective anticancer properties of these REV-ERB agonists impair glioblastoma growth
in vivo
and improve survival without causing overt toxicity in mice. These results indicate that pharmacological modulation of circadian regulators is an effective antitumour strategy, identifying a class of anticancer agents with a wide therapeutic window. We propose that REV-ERB agonists are inhibitors of autophagy and
de novo
lipogenesis, with selective activity towards malignant and benign neoplasms. |
doi_str_mv | 10.1038/nature25170 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A523570887</galeid><sourcerecordid>A523570887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c839t-8eb971761dc2449048e0ad5cb92f38eb984a14950c5ab5afcc1ef5bc5b4aa45a3</originalsourceid><addsrcrecordid>eNqF089v0zAUB_AIgdgYnLijiF1AkOGfiXNBKlWBSROgMkDiYr04TuoptTs7meC_x2VjpChjyiGK3yfflxfZSfIYoyOMqHhloR-8JhwX6E6yj1mRZywXxd1kHyEiMiRovpc8COEMIRQRu5_skZISxATaT75_WoFfg3Kda42CLgXVmwvojbOpa9Ll4mu2WL4JqQlpp_tVBMamCqzSPgVbp84q12qrM2PrQek6DfEhKB3Bw-ReA13Qj67uB8mXt4vT-fvs5OO74_nsJFOCln0mdFUWuMhxrQhjZfwsjaDmqipJQ7dFwQCzkiPFoeLQKIV1wyvFKwbAONCD5PVl7mao1rqOvXsPndx4swb_UzowcrdizUq27kLykrCC0hjw7CrAu_NBh16uTRyh68BqNwSJS1HynCBcRHr4Dz1zg7dxvN9KUI4x-ata6LQ0tnGxr9qGyllOCStzztl_FSeUF0iIbcdsQm1_eRzFWd2YuLzjn054tTHnctz6RjROOppA8ar12qjJ1s93Xoim1z_6FoYQ5PHn5e7wt9lx7oub7ez02_zDbvLteiJbeReC1831vsFIbo-XHB2vqJ-Mt9q1_XOeInh5CUIs2Vb70f6YyPsF-U4oKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989835112</pqid></control><display><type>article</type><title>Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sulli, Gabriele ; Rommel, Amy ; Wang, Xiaojie ; Kolar, Matthew J. ; Puca, Francesca ; Saghatelian, Alan ; Plikus, Maksim V. ; Verma, Inder M. ; Panda, Satchidananda</creator><creatorcontrib>Sulli, Gabriele ; Rommel, Amy ; Wang, Xiaojie ; Kolar, Matthew J. ; Puca, Francesca ; Saghatelian, Alan ; Plikus, Maksim V. ; Verma, Inder M. ; Panda, Satchidananda</creatorcontrib><description>REV-ERBs, nuclear hormone receptors that regulate transcription as part of the circadian clock cell machinery, inhibit autophagy and lipogenesis in premalignant and malignant cells and impair tumour growth
in vivo
.
Tumours restrained by REV-ERBs
The circadian clock regulates many of the physiological functions of an organism. Additionally, links between the circadian clock machinery and cancer have been demonstrated. Gabriele Sulli
et al
. have explored this link further by unravelling the functions of REV-ERBs. These nuclear hormone receptors regulate transcription and are an essential component of the circadian clock. Treatment of cancer cells with REV-ERB agonists results in cell death, through inhibition of autophagy and
de novo
lipogenesis. The agonists also impaired tumour growth
in vivo
.
The circadian clock imposes daily rhythms in cell proliferation, metabolism, inflammation and DNA damage response
1
,
2
. Perturbations of these processes are hallmarks of cancer
3
and chronic circadian rhythm disruption predisposes individuals to tumour development
1
,
4
. This raises the hypothesis that pharmacological modulation of the circadian machinery may be an effective therapeutic strategy for combating cancer. REV-ERBs, the nuclear hormone receptors REV-ERBα (also known as NR1D1) and REV-ERBβ (also known as NR1D2), are essential components of the circadian clock
5
,
6
. Here we show that two agonists of REV-ERBs—SR9009 and SR9011—are specifically lethal to cancer cells and oncogene-induced senescent cells, including melanocytic naevi, and have no effect on the viability of normal cells or tissues. The anticancer activity of SR9009 and SR9011 affects a number of oncogenic drivers (such as HRAS, BRAF, PIK3CA and others) and persists in the absence of p53 and under hypoxic conditions. The regulation of autophagy and
de novo
lipogenesis by SR9009 and SR9011 has a critical role in evoking an apoptotic response in malignant cells. Notably, the selective anticancer properties of these REV-ERB agonists impair glioblastoma growth
in vivo
and improve survival without causing overt toxicity in mice. These results indicate that pharmacological modulation of circadian regulators is an effective antitumour strategy, identifying a class of anticancer agents with a wide therapeutic window. We propose that REV-ERB agonists are inhibitors of autophagy and
de novo
lipogenesis, with selective activity towards malignant and benign neoplasms.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature25170</identifier><identifier>PMID: 29320480</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 45/77 ; 631/67/1059 ; 631/80/105 ; 631/80/509 ; 64/60 ; 82/51 ; 82/80 ; Aging (Biology) ; Agonists (Biochemistry) ; Animals ; Anticancer properties ; Antitumor activity ; Antitumor agents ; Apoptosis ; Apoptosis - drug effects ; Autophagy ; Autophagy (Cytology) ; Autophagy - drug effects ; Binding proteins ; Biocompatibility ; Brain cancer ; Cancer ; Cancer cells ; Cancer therapies ; Cancer treatment ; Cell aging ; Cell cycle ; Cell Line, Tumor ; Cell proliferation ; Cell receptors ; Cell Survival - drug effects ; Circadian Clocks - genetics ; Circadian Clocks - physiology ; Circadian rhythm ; Circadian rhythms ; Cytotoxicity ; Deoxyribonucleic acid ; DNA ; DNA damage ; Enzymes ; Fatty acids ; Female ; Gene expression ; Genetic aspects ; Genomes ; Glioblastoma ; Glioblastoma - drug therapy ; Glioblastoma - pathology ; Growth ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; Health aspects ; Humanities and Social Sciences ; Humans ; Hypoxia ; letter ; Lipogenesis ; Lipogenesis - drug effects ; Male ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Metabolism ; Metabolites ; Methods ; Mice, Inbred C57BL ; multidisciplinary ; Neoplasia ; Neoplasms ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - pathology ; Nevus - drug therapy ; Nevus - pathology ; Nuclear Receptor Subfamily 1, Group D, Member 1 - agonists ; Nuclear Receptor Subfamily 1, Group D, Member 1 - metabolism ; Nuclear receptors ; Oncogenes ; Oncogenes - genetics ; Oxidative stress ; p53 Protein ; Phagocytosis ; Pharmacology ; Pyrrolidines - pharmacology ; Receptors ; Regulators ; Science ; Senescence ; Signal Transduction - drug effects ; Stem cells ; Testing ; Thiophenes - pharmacology ; Toxicity ; Tumors</subject><ispartof>Nature (London), 2018-01, Vol.553 (7688), p.351-355</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 18, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c839t-8eb971761dc2449048e0ad5cb92f38eb984a14950c5ab5afcc1ef5bc5b4aa45a3</citedby><cites>FETCH-LOGICAL-c839t-8eb971761dc2449048e0ad5cb92f38eb984a14950c5ab5afcc1ef5bc5b4aa45a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature25170$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature25170$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29320480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sulli, Gabriele</creatorcontrib><creatorcontrib>Rommel, Amy</creatorcontrib><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Kolar, Matthew J.</creatorcontrib><creatorcontrib>Puca, Francesca</creatorcontrib><creatorcontrib>Saghatelian, Alan</creatorcontrib><creatorcontrib>Plikus, Maksim V.</creatorcontrib><creatorcontrib>Verma, Inder M.</creatorcontrib><creatorcontrib>Panda, Satchidananda</creatorcontrib><title>Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>REV-ERBs, nuclear hormone receptors that regulate transcription as part of the circadian clock cell machinery, inhibit autophagy and lipogenesis in premalignant and malignant cells and impair tumour growth
in vivo
.
Tumours restrained by REV-ERBs
The circadian clock regulates many of the physiological functions of an organism. Additionally, links between the circadian clock machinery and cancer have been demonstrated. Gabriele Sulli
et al
. have explored this link further by unravelling the functions of REV-ERBs. These nuclear hormone receptors regulate transcription and are an essential component of the circadian clock. Treatment of cancer cells with REV-ERB agonists results in cell death, through inhibition of autophagy and
de novo
lipogenesis. The agonists also impaired tumour growth
in vivo
.
The circadian clock imposes daily rhythms in cell proliferation, metabolism, inflammation and DNA damage response
1
,
2
. Perturbations of these processes are hallmarks of cancer
3
and chronic circadian rhythm disruption predisposes individuals to tumour development
1
,
4
. This raises the hypothesis that pharmacological modulation of the circadian machinery may be an effective therapeutic strategy for combating cancer. REV-ERBs, the nuclear hormone receptors REV-ERBα (also known as NR1D1) and REV-ERBβ (also known as NR1D2), are essential components of the circadian clock
5
,
6
. Here we show that two agonists of REV-ERBs—SR9009 and SR9011—are specifically lethal to cancer cells and oncogene-induced senescent cells, including melanocytic naevi, and have no effect on the viability of normal cells or tissues. The anticancer activity of SR9009 and SR9011 affects a number of oncogenic drivers (such as HRAS, BRAF, PIK3CA and others) and persists in the absence of p53 and under hypoxic conditions. The regulation of autophagy and
de novo
lipogenesis by SR9009 and SR9011 has a critical role in evoking an apoptotic response in malignant cells. Notably, the selective anticancer properties of these REV-ERB agonists impair glioblastoma growth
in vivo
and improve survival without causing overt toxicity in mice. These results indicate that pharmacological modulation of circadian regulators is an effective antitumour strategy, identifying a class of anticancer agents with a wide therapeutic window. We propose that REV-ERB agonists are inhibitors of autophagy and
de novo
lipogenesis, with selective activity towards malignant and benign neoplasms.</description><subject>13/1</subject><subject>45/77</subject><subject>631/67/1059</subject><subject>631/80/105</subject><subject>631/80/509</subject><subject>64/60</subject><subject>82/51</subject><subject>82/80</subject><subject>Aging (Biology)</subject><subject>Agonists (Biochemistry)</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antitumor activity</subject><subject>Antitumor agents</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Autophagy</subject><subject>Autophagy (Cytology)</subject><subject>Autophagy - drug effects</subject><subject>Binding proteins</subject><subject>Biocompatibility</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Cancer therapies</subject><subject>Cancer treatment</subject><subject>Cell aging</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Cell receptors</subject><subject>Cell Survival - drug effects</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian Clocks - physiology</subject><subject>Circadian rhythm</subject><subject>Circadian rhythms</subject><subject>Cytotoxicity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - pathology</subject><subject>Growth</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Health aspects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>letter</subject><subject>Lipogenesis</subject><subject>Lipogenesis - drug effects</subject><subject>Male</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>Neoplasia</subject><subject>Neoplasms</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Nevus - drug therapy</subject><subject>Nevus - pathology</subject><subject>Nuclear Receptor Subfamily 1, Group D, Member 1 - agonists</subject><subject>Nuclear Receptor Subfamily 1, Group D, Member 1 - metabolism</subject><subject>Nuclear receptors</subject><subject>Oncogenes</subject><subject>Oncogenes - genetics</subject><subject>Oxidative stress</subject><subject>p53 Protein</subject><subject>Phagocytosis</subject><subject>Pharmacology</subject><subject>Pyrrolidines - pharmacology</subject><subject>Receptors</subject><subject>Regulators</subject><subject>Science</subject><subject>Senescence</subject><subject>Signal Transduction - drug effects</subject><subject>Stem cells</subject><subject>Testing</subject><subject>Thiophenes - pharmacology</subject><subject>Toxicity</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF089v0zAUB_AIgdgYnLijiF1AkOGfiXNBKlWBSROgMkDiYr04TuoptTs7meC_x2VjpChjyiGK3yfflxfZSfIYoyOMqHhloR-8JhwX6E6yj1mRZywXxd1kHyEiMiRovpc8COEMIRQRu5_skZISxATaT75_WoFfg3Kda42CLgXVmwvojbOpa9Ll4mu2WL4JqQlpp_tVBMamCqzSPgVbp84q12qrM2PrQek6DfEhKB3Bw-ReA13Qj67uB8mXt4vT-fvs5OO74_nsJFOCln0mdFUWuMhxrQhjZfwsjaDmqipJQ7dFwQCzkiPFoeLQKIV1wyvFKwbAONCD5PVl7mao1rqOvXsPndx4swb_UzowcrdizUq27kLykrCC0hjw7CrAu_NBh16uTRyh68BqNwSJS1HynCBcRHr4Dz1zg7dxvN9KUI4x-ata6LQ0tnGxr9qGyllOCStzztl_FSeUF0iIbcdsQm1_eRzFWd2YuLzjn054tTHnctz6RjROOppA8ar12qjJ1s93Xoim1z_6FoYQ5PHn5e7wt9lx7oub7ez02_zDbvLteiJbeReC1831vsFIbo-XHB2vqJ-Mt9q1_XOeInh5CUIs2Vb70f6YyPsF-U4oKQ</recordid><startdate>20180118</startdate><enddate>20180118</enddate><creator>Sulli, Gabriele</creator><creator>Rommel, Amy</creator><creator>Wang, Xiaojie</creator><creator>Kolar, Matthew J.</creator><creator>Puca, Francesca</creator><creator>Saghatelian, Alan</creator><creator>Plikus, Maksim V.</creator><creator>Verma, Inder M.</creator><creator>Panda, Satchidananda</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180118</creationdate><title>Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence</title><author>Sulli, Gabriele ; Rommel, Amy ; Wang, Xiaojie ; Kolar, Matthew J. ; Puca, Francesca ; Saghatelian, Alan ; Plikus, Maksim V. ; Verma, Inder M. ; Panda, Satchidananda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c839t-8eb971761dc2449048e0ad5cb92f38eb984a14950c5ab5afcc1ef5bc5b4aa45a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>45/77</topic><topic>631/67/1059</topic><topic>631/80/105</topic><topic>631/80/509</topic><topic>64/60</topic><topic>82/51</topic><topic>82/80</topic><topic>Aging (Biology)</topic><topic>Agonists (Biochemistry)</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antitumor activity</topic><topic>Antitumor agents</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Autophagy</topic><topic>Autophagy (Cytology)</topic><topic>Autophagy - drug effects</topic><topic>Binding proteins</topic><topic>Biocompatibility</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Cancer therapies</topic><topic>Cancer treatment</topic><topic>Cell aging</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Cell receptors</topic><topic>Cell Survival - drug effects</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian Clocks - physiology</topic><topic>Circadian rhythm</topic><topic>Circadian rhythms</topic><topic>Cytotoxicity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - pathology</topic><topic>Growth</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Health aspects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>letter</topic><topic>Lipogenesis</topic><topic>Lipogenesis - drug effects</topic><topic>Male</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>Neoplasia</topic><topic>Neoplasms</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Nevus - drug therapy</topic><topic>Nevus - pathology</topic><topic>Nuclear Receptor Subfamily 1, Group D, Member 1 - agonists</topic><topic>Nuclear Receptor Subfamily 1, Group D, Member 1 - metabolism</topic><topic>Nuclear receptors</topic><topic>Oncogenes</topic><topic>Oncogenes - genetics</topic><topic>Oxidative stress</topic><topic>p53 Protein</topic><topic>Phagocytosis</topic><topic>Pharmacology</topic><topic>Pyrrolidines - pharmacology</topic><topic>Receptors</topic><topic>Regulators</topic><topic>Science</topic><topic>Senescence</topic><topic>Signal Transduction - drug effects</topic><topic>Stem cells</topic><topic>Testing</topic><topic>Thiophenes - pharmacology</topic><topic>Toxicity</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sulli, Gabriele</creatorcontrib><creatorcontrib>Rommel, Amy</creatorcontrib><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Kolar, Matthew J.</creatorcontrib><creatorcontrib>Puca, Francesca</creatorcontrib><creatorcontrib>Saghatelian, Alan</creatorcontrib><creatorcontrib>Plikus, Maksim V.</creatorcontrib><creatorcontrib>Verma, Inder M.</creatorcontrib><creatorcontrib>Panda, Satchidananda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sulli, Gabriele</au><au>Rommel, Amy</au><au>Wang, Xiaojie</au><au>Kolar, Matthew J.</au><au>Puca, Francesca</au><au>Saghatelian, Alan</au><au>Plikus, Maksim V.</au><au>Verma, Inder M.</au><au>Panda, Satchidananda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-01-18</date><risdate>2018</risdate><volume>553</volume><issue>7688</issue><spage>351</spage><epage>355</epage><pages>351-355</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>REV-ERBs, nuclear hormone receptors that regulate transcription as part of the circadian clock cell machinery, inhibit autophagy and lipogenesis in premalignant and malignant cells and impair tumour growth
in vivo
.
Tumours restrained by REV-ERBs
The circadian clock regulates many of the physiological functions of an organism. Additionally, links between the circadian clock machinery and cancer have been demonstrated. Gabriele Sulli
et al
. have explored this link further by unravelling the functions of REV-ERBs. These nuclear hormone receptors regulate transcription and are an essential component of the circadian clock. Treatment of cancer cells with REV-ERB agonists results in cell death, through inhibition of autophagy and
de novo
lipogenesis. The agonists also impaired tumour growth
in vivo
.
The circadian clock imposes daily rhythms in cell proliferation, metabolism, inflammation and DNA damage response
1
,
2
. Perturbations of these processes are hallmarks of cancer
3
and chronic circadian rhythm disruption predisposes individuals to tumour development
1
,
4
. This raises the hypothesis that pharmacological modulation of the circadian machinery may be an effective therapeutic strategy for combating cancer. REV-ERBs, the nuclear hormone receptors REV-ERBα (also known as NR1D1) and REV-ERBβ (also known as NR1D2), are essential components of the circadian clock
5
,
6
. Here we show that two agonists of REV-ERBs—SR9009 and SR9011—are specifically lethal to cancer cells and oncogene-induced senescent cells, including melanocytic naevi, and have no effect on the viability of normal cells or tissues. The anticancer activity of SR9009 and SR9011 affects a number of oncogenic drivers (such as HRAS, BRAF, PIK3CA and others) and persists in the absence of p53 and under hypoxic conditions. The regulation of autophagy and
de novo
lipogenesis by SR9009 and SR9011 has a critical role in evoking an apoptotic response in malignant cells. Notably, the selective anticancer properties of these REV-ERB agonists impair glioblastoma growth
in vivo
and improve survival without causing overt toxicity in mice. These results indicate that pharmacological modulation of circadian regulators is an effective antitumour strategy, identifying a class of anticancer agents with a wide therapeutic window. We propose that REV-ERB agonists are inhibitors of autophagy and
de novo
lipogenesis, with selective activity towards malignant and benign neoplasms.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29320480</pmid><doi>10.1038/nature25170</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-01, Vol.553 (7688), p.351-355 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924733 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 13/1 45/77 631/67/1059 631/80/105 631/80/509 64/60 82/51 82/80 Aging (Biology) Agonists (Biochemistry) Animals Anticancer properties Antitumor activity Antitumor agents Apoptosis Apoptosis - drug effects Autophagy Autophagy (Cytology) Autophagy - drug effects Binding proteins Biocompatibility Brain cancer Cancer Cancer cells Cancer therapies Cancer treatment Cell aging Cell cycle Cell Line, Tumor Cell proliferation Cell receptors Cell Survival - drug effects Circadian Clocks - genetics Circadian Clocks - physiology Circadian rhythm Circadian rhythms Cytotoxicity Deoxyribonucleic acid DNA DNA damage Enzymes Fatty acids Female Gene expression Genetic aspects Genomes Glioblastoma Glioblastoma - drug therapy Glioblastoma - pathology Growth GTP Phosphohydrolases - genetics GTP Phosphohydrolases - metabolism Health aspects Humanities and Social Sciences Humans Hypoxia letter Lipogenesis Lipogenesis - drug effects Male Membrane Proteins - genetics Membrane Proteins - metabolism Metabolism Metabolites Methods Mice, Inbred C57BL multidisciplinary Neoplasia Neoplasms Neoplasms - drug therapy Neoplasms - genetics Neoplasms - pathology Nevus - drug therapy Nevus - pathology Nuclear Receptor Subfamily 1, Group D, Member 1 - agonists Nuclear Receptor Subfamily 1, Group D, Member 1 - metabolism Nuclear receptors Oncogenes Oncogenes - genetics Oxidative stress p53 Protein Phagocytosis Pharmacology Pyrrolidines - pharmacology Receptors Regulators Science Senescence Signal Transduction - drug effects Stem cells Testing Thiophenes - pharmacology Toxicity Tumors |
title | Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacological%20activation%20of%20REV-ERBs%20is%20lethal%20in%20cancer%20and%20oncogene-induced%20senescence&rft.jtitle=Nature%20(London)&rft.au=Sulli,%20Gabriele&rft.date=2018-01-18&rft.volume=553&rft.issue=7688&rft.spage=351&rft.epage=355&rft.pages=351-355&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature25170&rft_dat=%3Cgale_pubme%3EA523570887%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989835112&rft_id=info:pmid/29320480&rft_galeid=A523570887&rfr_iscdi=true |