Bioprinting Perfusion-Enabled Liver Equivalents for Advanced Organ-on-a-Chip Applications
Many tissue models have been developed to mimic liver-specific functions for metabolic and toxin conversion in in vitro assays. Most models represent a 2D environment rather than a complex 3D structure similar to native tissue. To overcome this issue, spheroid cultures have become the gold standard...
Gespeichert in:
Veröffentlicht in: | Genes 2018-03, Vol.9 (4), p.176 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 176 |
container_title | Genes |
container_volume | 9 |
creator | Grix, Tobias Ruppelt, Alicia Thomas, Alexander Amler, Anna-Klara Noichl, Benjamin P Lauster, Roland Kloke, Lutz |
description | Many tissue models have been developed to mimic liver-specific functions for metabolic and toxin conversion in in vitro assays. Most models represent a 2D environment rather than a complex 3D structure similar to native tissue. To overcome this issue, spheroid cultures have become the gold standard in tissue engineering. Unfortunately, spheroids are limited in size due to diffusion barriers in their dense structures, limiting nutrient and oxygen supply. Recent developments in bioprinting techniques have enabled us to engineer complex 3D structures with perfusion-enabled channel systems to ensure nutritional supply within larger, densely-populated tissue models. In this study, we present a proof-of-concept for the feasibility of bioprinting a liver organoid by combining HepaRG and human stellate cells in a stereolithographic printing approach, and show basic characterization under static cultivation conditions. Using standard tissue engineering analytics, such as immunohistology and qPCR, we found higher albumin and cytochrome P
3A4 (CYP3A4) expression in bioprinted liver tissues compared to monolayer controls over a two-week cultivation period. In addition, the expression of tight junctions, liver-specific bile transporter multidrug resistance-associated protein 2 (MRP2), and overall metabolism (glucose, lactate, lactate dehydrogenase (LDH)) were found to be stable. Furthermore, we provide evidence for the perfusability of the organoids' intrinsic channel system. These results motivate new approaches and further development in liver tissue engineering for advanced organ-on-a-chip applications and pharmaceutical developments. |
doi_str_mv | 10.3390/genes9040176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2040953783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-489d194813280b69d8517cec4a290cc6747eddd6301af9437b689e6f331094443</originalsourceid><addsrcrecordid>eNpdkUFr3DAQhUVp6IYkt56LIZcc4mZkjWzpEtgu26SwkBySQ09CK8sbBa_kSPZC_31UNg2bzmUG3sdjHo-QrxS-MybhamO9TRIQaFN_IscVNKxErPjng3tGzlJ6hjwIFQD_QmaV5DUXFI_J7x8uDNH50flNcW9jNyUXfLn0et3btli5nY3F8mVyO91bP6aiC7GYtzvtTZbv4kb7MvO6XDy5oZgPQ--MHrNFOiVHne6TPXvbJ-Tx5_JhcVuu7m5-Lear0mAjxhKFbKlEQVklYF3LVnDaGGtQVxKMqRtsbNu2NQOqO4msWddC2rpjjIJERHZCrve-w7Te2tbkL6PuVQ611fGPCtqpj4p3T2oTdorLCjkV2eDizSCGl8mmUW1dMrbvtbdhSqoCKoByQJnR8__Q5zBFn-NlCkFy1giWqcs9ZWJIKdru_RkK6m9t6rC2jH87DPAO_yuJvQKTw5MS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040953783</pqid></control><display><type>article</type><title>Bioprinting Perfusion-Enabled Liver Equivalents for Advanced Organ-on-a-Chip Applications</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Grix, Tobias ; Ruppelt, Alicia ; Thomas, Alexander ; Amler, Anna-Klara ; Noichl, Benjamin P ; Lauster, Roland ; Kloke, Lutz</creator><creatorcontrib>Grix, Tobias ; Ruppelt, Alicia ; Thomas, Alexander ; Amler, Anna-Klara ; Noichl, Benjamin P ; Lauster, Roland ; Kloke, Lutz</creatorcontrib><description>Many tissue models have been developed to mimic liver-specific functions for metabolic and toxin conversion in in vitro assays. Most models represent a 2D environment rather than a complex 3D structure similar to native tissue. To overcome this issue, spheroid cultures have become the gold standard in tissue engineering. Unfortunately, spheroids are limited in size due to diffusion barriers in their dense structures, limiting nutrient and oxygen supply. Recent developments in bioprinting techniques have enabled us to engineer complex 3D structures with perfusion-enabled channel systems to ensure nutritional supply within larger, densely-populated tissue models. In this study, we present a proof-of-concept for the feasibility of bioprinting a liver organoid by combining HepaRG and human stellate cells in a stereolithographic printing approach, and show basic characterization under static cultivation conditions. Using standard tissue engineering analytics, such as immunohistology and qPCR, we found higher albumin and cytochrome P
3A4 (CYP3A4) expression in bioprinted liver tissues compared to monolayer controls over a two-week cultivation period. In addition, the expression of tight junctions, liver-specific bile transporter multidrug resistance-associated protein 2 (MRP2), and overall metabolism (glucose, lactate, lactate dehydrogenase (LDH)) were found to be stable. Furthermore, we provide evidence for the perfusability of the organoids' intrinsic channel system. These results motivate new approaches and further development in liver tissue engineering for advanced organ-on-a-chip applications and pharmaceutical developments.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes9040176</identifier><identifier>PMID: 29565814</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bile ; Cytochrome P450 ; Glucose metabolism ; L-Lactate dehydrogenase ; Lactic acid ; Liver ; Multidrug resistance ; Organoids ; Perfusion ; Protein transport ; Protein turnover ; Spheroids ; Stellate cells ; Tight junctions ; Tissue engineering</subject><ispartof>Genes, 2018-03, Vol.9 (4), p.176</ispartof><rights>Copyright MDPI AG 2018</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-489d194813280b69d8517cec4a290cc6747eddd6301af9437b689e6f331094443</citedby><cites>FETCH-LOGICAL-c478t-489d194813280b69d8517cec4a290cc6747eddd6301af9437b689e6f331094443</cites><orcidid>0000-0003-1404-7822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5924518/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5924518/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29565814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grix, Tobias</creatorcontrib><creatorcontrib>Ruppelt, Alicia</creatorcontrib><creatorcontrib>Thomas, Alexander</creatorcontrib><creatorcontrib>Amler, Anna-Klara</creatorcontrib><creatorcontrib>Noichl, Benjamin P</creatorcontrib><creatorcontrib>Lauster, Roland</creatorcontrib><creatorcontrib>Kloke, Lutz</creatorcontrib><title>Bioprinting Perfusion-Enabled Liver Equivalents for Advanced Organ-on-a-Chip Applications</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>Many tissue models have been developed to mimic liver-specific functions for metabolic and toxin conversion in in vitro assays. Most models represent a 2D environment rather than a complex 3D structure similar to native tissue. To overcome this issue, spheroid cultures have become the gold standard in tissue engineering. Unfortunately, spheroids are limited in size due to diffusion barriers in their dense structures, limiting nutrient and oxygen supply. Recent developments in bioprinting techniques have enabled us to engineer complex 3D structures with perfusion-enabled channel systems to ensure nutritional supply within larger, densely-populated tissue models. In this study, we present a proof-of-concept for the feasibility of bioprinting a liver organoid by combining HepaRG and human stellate cells in a stereolithographic printing approach, and show basic characterization under static cultivation conditions. Using standard tissue engineering analytics, such as immunohistology and qPCR, we found higher albumin and cytochrome P
3A4 (CYP3A4) expression in bioprinted liver tissues compared to monolayer controls over a two-week cultivation period. In addition, the expression of tight junctions, liver-specific bile transporter multidrug resistance-associated protein 2 (MRP2), and overall metabolism (glucose, lactate, lactate dehydrogenase (LDH)) were found to be stable. Furthermore, we provide evidence for the perfusability of the organoids' intrinsic channel system. These results motivate new approaches and further development in liver tissue engineering for advanced organ-on-a-chip applications and pharmaceutical developments.</description><subject>Bile</subject><subject>Cytochrome P450</subject><subject>Glucose metabolism</subject><subject>L-Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Liver</subject><subject>Multidrug resistance</subject><subject>Organoids</subject><subject>Perfusion</subject><subject>Protein transport</subject><subject>Protein turnover</subject><subject>Spheroids</subject><subject>Stellate cells</subject><subject>Tight junctions</subject><subject>Tissue engineering</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUFr3DAQhUVp6IYkt56LIZcc4mZkjWzpEtgu26SwkBySQ09CK8sbBa_kSPZC_31UNg2bzmUG3sdjHo-QrxS-MybhamO9TRIQaFN_IscVNKxErPjng3tGzlJ6hjwIFQD_QmaV5DUXFI_J7x8uDNH50flNcW9jNyUXfLn0et3btli5nY3F8mVyO91bP6aiC7GYtzvtTZbv4kb7MvO6XDy5oZgPQ--MHrNFOiVHne6TPXvbJ-Tx5_JhcVuu7m5-Lear0mAjxhKFbKlEQVklYF3LVnDaGGtQVxKMqRtsbNu2NQOqO4msWddC2rpjjIJERHZCrve-w7Te2tbkL6PuVQ611fGPCtqpj4p3T2oTdorLCjkV2eDizSCGl8mmUW1dMrbvtbdhSqoCKoByQJnR8__Q5zBFn-NlCkFy1giWqcs9ZWJIKdru_RkK6m9t6rC2jH87DPAO_yuJvQKTw5MS</recordid><startdate>20180322</startdate><enddate>20180322</enddate><creator>Grix, Tobias</creator><creator>Ruppelt, Alicia</creator><creator>Thomas, Alexander</creator><creator>Amler, Anna-Klara</creator><creator>Noichl, Benjamin P</creator><creator>Lauster, Roland</creator><creator>Kloke, Lutz</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1404-7822</orcidid></search><sort><creationdate>20180322</creationdate><title>Bioprinting Perfusion-Enabled Liver Equivalents for Advanced Organ-on-a-Chip Applications</title><author>Grix, Tobias ; Ruppelt, Alicia ; Thomas, Alexander ; Amler, Anna-Klara ; Noichl, Benjamin P ; Lauster, Roland ; Kloke, Lutz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-489d194813280b69d8517cec4a290cc6747eddd6301af9437b689e6f331094443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bile</topic><topic>Cytochrome P450</topic><topic>Glucose metabolism</topic><topic>L-Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Liver</topic><topic>Multidrug resistance</topic><topic>Organoids</topic><topic>Perfusion</topic><topic>Protein transport</topic><topic>Protein turnover</topic><topic>Spheroids</topic><topic>Stellate cells</topic><topic>Tight junctions</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grix, Tobias</creatorcontrib><creatorcontrib>Ruppelt, Alicia</creatorcontrib><creatorcontrib>Thomas, Alexander</creatorcontrib><creatorcontrib>Amler, Anna-Klara</creatorcontrib><creatorcontrib>Noichl, Benjamin P</creatorcontrib><creatorcontrib>Lauster, Roland</creatorcontrib><creatorcontrib>Kloke, Lutz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grix, Tobias</au><au>Ruppelt, Alicia</au><au>Thomas, Alexander</au><au>Amler, Anna-Klara</au><au>Noichl, Benjamin P</au><au>Lauster, Roland</au><au>Kloke, Lutz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioprinting Perfusion-Enabled Liver Equivalents for Advanced Organ-on-a-Chip Applications</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2018-03-22</date><risdate>2018</risdate><volume>9</volume><issue>4</issue><spage>176</spage><pages>176-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Many tissue models have been developed to mimic liver-specific functions for metabolic and toxin conversion in in vitro assays. Most models represent a 2D environment rather than a complex 3D structure similar to native tissue. To overcome this issue, spheroid cultures have become the gold standard in tissue engineering. Unfortunately, spheroids are limited in size due to diffusion barriers in their dense structures, limiting nutrient and oxygen supply. Recent developments in bioprinting techniques have enabled us to engineer complex 3D structures with perfusion-enabled channel systems to ensure nutritional supply within larger, densely-populated tissue models. In this study, we present a proof-of-concept for the feasibility of bioprinting a liver organoid by combining HepaRG and human stellate cells in a stereolithographic printing approach, and show basic characterization under static cultivation conditions. Using standard tissue engineering analytics, such as immunohistology and qPCR, we found higher albumin and cytochrome P
3A4 (CYP3A4) expression in bioprinted liver tissues compared to monolayer controls over a two-week cultivation period. In addition, the expression of tight junctions, liver-specific bile transporter multidrug resistance-associated protein 2 (MRP2), and overall metabolism (glucose, lactate, lactate dehydrogenase (LDH)) were found to be stable. Furthermore, we provide evidence for the perfusability of the organoids' intrinsic channel system. These results motivate new approaches and further development in liver tissue engineering for advanced organ-on-a-chip applications and pharmaceutical developments.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29565814</pmid><doi>10.3390/genes9040176</doi><orcidid>https://orcid.org/0000-0003-1404-7822</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4425 |
ispartof | Genes, 2018-03, Vol.9 (4), p.176 |
issn | 2073-4425 2073-4425 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924518 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Bile Cytochrome P450 Glucose metabolism L-Lactate dehydrogenase Lactic acid Liver Multidrug resistance Organoids Perfusion Protein transport Protein turnover Spheroids Stellate cells Tight junctions Tissue engineering |
title | Bioprinting Perfusion-Enabled Liver Equivalents for Advanced Organ-on-a-Chip Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioprinting%20Perfusion-Enabled%20Liver%20Equivalents%20for%20Advanced%20Organ-on-a-Chip%20Applications&rft.jtitle=Genes&rft.au=Grix,%20Tobias&rft.date=2018-03-22&rft.volume=9&rft.issue=4&rft.spage=176&rft.pages=176-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes9040176&rft_dat=%3Cproquest_pubme%3E2040953783%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040953783&rft_id=info:pmid/29565814&rfr_iscdi=true |