Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges

The aberrant tumour vasculature and the associated angiogenic factors have been implicated in tumour immune evasion and progression. Herein, the authors provide their perspectives on how normalization of the tumour microenvironment using antiangiogenic agents could potentially increase the effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Clinical oncology 2018-05, Vol.15 (5), p.325-340
Hauptverfasser: Fukumura, Dai, Kloepper, Jonas, Amoozgar, Zohreh, Duda, Dan G., Jain, Rakesh K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 340
container_issue 5
container_start_page 325
container_title Nature reviews. Clinical oncology
container_volume 15
creator Fukumura, Dai
Kloepper, Jonas
Amoozgar, Zohreh
Duda, Dan G.
Jain, Rakesh K.
description The aberrant tumour vasculature and the associated angiogenic factors have been implicated in tumour immune evasion and progression. Herein, the authors provide their perspectives on how normalization of the tumour microenvironment using antiangiogenic agents could potentially increase the effectiveness of immunotherapies and improve the outcomes of patients with cancer. The authors also highlight important considerations for future research in this area. Immunotherapy has emerged as a major therapeutic modality in oncology. Currently, however, the majority of patients with cancer do not derive benefit from these treatments. Vascular abnormalities are a hallmark of most solid tumours and facilitate immune evasion. These abnormalities stem from elevated levels of proangiogenic factors, such as VEGF and angiopoietin 2 (ANG2); judicious use of drugs targeting these molecules can improve therapeutic responsiveness, partially owing to normalization of the abnormal tumour vasculature that can, in turn, increase the infiltration of immune effector cells into tumours and convert the intrinsically immunosuppressive tumour microenvironment (TME) to an immunosupportive one. Immunotherapy relies on the accumulation and activity of immune effector cells within the TME, and immune responses and vascular normalization seem to be reciprocally regulated. Thus, combining antiangiogenic therapies and immunotherapies might increase the effectiveness of immunotherapy and diminish the risk of immune-related adverse effects. In this Perspective, we outline the roles of VEGF and ANG2 in tumour immune evasion and progression, and discuss the evidence indicating that antiangiogenic agents can normalize the TME. We also suggest ways that antiangiogenic agents can be combined with immune-checkpoint inhibitors to potentially improve patient outcomes, and highlight avenues of future research.
doi_str_mv 10.1038/nrclinonc.2018.29
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5921900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A535054364</galeid><sourcerecordid>A535054364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c662t-90f01e7aa0042f0bc0a7b51a738c9b85e3ea5360d5b6effc8f792022466ac0213</originalsourceid><addsrcrecordid>eNp9kl9rFDEUxQdRbK1-AF9kQBBfdr1JJsnEh0Ip9Q8UBNHnkMnemUnJJGsyI_Tbm2XrtisqeUjI-Z2T3MutqpcE1gRY-y4k612Iwa4pkHZN1aPqlEiuVo1s6ePDWTYn1bOcbwCEaCR7Wp1QxaFtOT-tvl6F0QTrwlDbsmOq3TQtIc4jJrO9rZe8k0yYnQmDiwMGZ_P7Om63Mc1LcLPDXORNbUfjPYYB8_PqSW98xhd3-1n1_cPVt8tPq-svHz9fXlyvrBB0XinogaA0BqChPXQWjOw4MZK1VnUtR4aGMwEb3gnse9v2UlGgtBHCWKCEnVXn-9zt0k24sRjmZLzeJjeZdKujcfpYCW7UQ_ypuaJEAZSAt3cBKf5YMM96ctmi9yZgXLIuTSVUclCyoK__QG_ikkIpT1OhOKOUN_BfCqhgikvG76nBeNQu9LH8zu6e1hecceANE02h1n-hytrg5GwM2Ltyf2R488AwovHzmKNfZhdDPgbJHrQp5pywP7SMgN7NlT7M1a4FraaqeF497PXB8XuQCkD3QC5SmYJ0X_q_U38BnLXbcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2026395735</pqid></control><display><type>article</type><title>Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Fukumura, Dai ; Kloepper, Jonas ; Amoozgar, Zohreh ; Duda, Dan G. ; Jain, Rakesh K.</creator><creatorcontrib>Fukumura, Dai ; Kloepper, Jonas ; Amoozgar, Zohreh ; Duda, Dan G. ; Jain, Rakesh K.</creatorcontrib><description>The aberrant tumour vasculature and the associated angiogenic factors have been implicated in tumour immune evasion and progression. Herein, the authors provide their perspectives on how normalization of the tumour microenvironment using antiangiogenic agents could potentially increase the effectiveness of immunotherapies and improve the outcomes of patients with cancer. The authors also highlight important considerations for future research in this area. Immunotherapy has emerged as a major therapeutic modality in oncology. Currently, however, the majority of patients with cancer do not derive benefit from these treatments. Vascular abnormalities are a hallmark of most solid tumours and facilitate immune evasion. These abnormalities stem from elevated levels of proangiogenic factors, such as VEGF and angiopoietin 2 (ANG2); judicious use of drugs targeting these molecules can improve therapeutic responsiveness, partially owing to normalization of the abnormal tumour vasculature that can, in turn, increase the infiltration of immune effector cells into tumours and convert the intrinsically immunosuppressive tumour microenvironment (TME) to an immunosupportive one. Immunotherapy relies on the accumulation and activity of immune effector cells within the TME, and immune responses and vascular normalization seem to be reciprocally regulated. Thus, combining antiangiogenic therapies and immunotherapies might increase the effectiveness of immunotherapy and diminish the risk of immune-related adverse effects. In this Perspective, we outline the roles of VEGF and ANG2 in tumour immune evasion and progression, and discuss the evidence indicating that antiangiogenic agents can normalize the TME. We also suggest ways that antiangiogenic agents can be combined with immune-checkpoint inhibitors to potentially improve patient outcomes, and highlight avenues of future research.</description><identifier>ISSN: 1759-4774</identifier><identifier>EISSN: 1759-4782</identifier><identifier>DOI: 10.1038/nrclinonc.2018.29</identifier><identifier>PMID: 29508855</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/699/67/1059/2325 ; 692/699/67/1059/602 ; 692/699/67/2328 ; 692/699/67/322 ; 692/699/67/580 ; Angiogenesis ; Angiogenesis inhibitors ; Angiogenesis Inhibitors - therapeutic use ; Angiopoietin ; Antiangiogenic agents ; Cancer ; Cancer immunotherapy ; Cancer research ; Cancer treatment ; Carcinogenesis ; Dosage and administration ; Drug delivery ; Effector cells ; Health aspects ; Humans ; Immune checkpoint inhibitors ; Immune response ; Immunosuppressive agents ; Immunotherapy ; Immunotherapy - trends ; Medicine &amp; Public Health ; Metastases ; Methods ; Microenvironments ; Neoplasms - drug therapy ; Neoplasms - immunology ; Neovascularization, Pathologic - drug therapy ; Neovascularization, Pathologic - immunology ; Oncology ; opinion-2 ; Physiological aspects ; Solid tumors ; T cell receptors ; Tumor microenvironment ; Tumor Microenvironment - drug effects ; Tumor Microenvironment - immunology ; Tumors ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - immunology ; Vascular Endothelial Growth Factor A - therapeutic use ; Vesicular Transport Proteins - immunology ; Vesicular Transport Proteins - therapeutic use</subject><ispartof>Nature reviews. Clinical oncology, 2018-05, Vol.15 (5), p.325-340</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2018</rights><rights>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c662t-90f01e7aa0042f0bc0a7b51a738c9b85e3ea5360d5b6effc8f792022466ac0213</citedby><cites>FETCH-LOGICAL-c662t-90f01e7aa0042f0bc0a7b51a738c9b85e3ea5360d5b6effc8f792022466ac0213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29508855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fukumura, Dai</creatorcontrib><creatorcontrib>Kloepper, Jonas</creatorcontrib><creatorcontrib>Amoozgar, Zohreh</creatorcontrib><creatorcontrib>Duda, Dan G.</creatorcontrib><creatorcontrib>Jain, Rakesh K.</creatorcontrib><title>Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges</title><title>Nature reviews. Clinical oncology</title><addtitle>Nat Rev Clin Oncol</addtitle><addtitle>Nat Rev Clin Oncol</addtitle><description>The aberrant tumour vasculature and the associated angiogenic factors have been implicated in tumour immune evasion and progression. Herein, the authors provide their perspectives on how normalization of the tumour microenvironment using antiangiogenic agents could potentially increase the effectiveness of immunotherapies and improve the outcomes of patients with cancer. The authors also highlight important considerations for future research in this area. Immunotherapy has emerged as a major therapeutic modality in oncology. Currently, however, the majority of patients with cancer do not derive benefit from these treatments. Vascular abnormalities are a hallmark of most solid tumours and facilitate immune evasion. These abnormalities stem from elevated levels of proangiogenic factors, such as VEGF and angiopoietin 2 (ANG2); judicious use of drugs targeting these molecules can improve therapeutic responsiveness, partially owing to normalization of the abnormal tumour vasculature that can, in turn, increase the infiltration of immune effector cells into tumours and convert the intrinsically immunosuppressive tumour microenvironment (TME) to an immunosupportive one. Immunotherapy relies on the accumulation and activity of immune effector cells within the TME, and immune responses and vascular normalization seem to be reciprocally regulated. Thus, combining antiangiogenic therapies and immunotherapies might increase the effectiveness of immunotherapy and diminish the risk of immune-related adverse effects. In this Perspective, we outline the roles of VEGF and ANG2 in tumour immune evasion and progression, and discuss the evidence indicating that antiangiogenic agents can normalize the TME. We also suggest ways that antiangiogenic agents can be combined with immune-checkpoint inhibitors to potentially improve patient outcomes, and highlight avenues of future research.</description><subject>692/699/67/1059/2325</subject><subject>692/699/67/1059/602</subject><subject>692/699/67/2328</subject><subject>692/699/67/322</subject><subject>692/699/67/580</subject><subject>Angiogenesis</subject><subject>Angiogenesis inhibitors</subject><subject>Angiogenesis Inhibitors - therapeutic use</subject><subject>Angiopoietin</subject><subject>Antiangiogenic agents</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Cancer research</subject><subject>Cancer treatment</subject><subject>Carcinogenesis</subject><subject>Dosage and administration</subject><subject>Drug delivery</subject><subject>Effector cells</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immune checkpoint inhibitors</subject><subject>Immune response</subject><subject>Immunosuppressive agents</subject><subject>Immunotherapy</subject><subject>Immunotherapy - trends</subject><subject>Medicine &amp; Public Health</subject><subject>Metastases</subject><subject>Methods</subject><subject>Microenvironments</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - immunology</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>Neovascularization, Pathologic - immunology</subject><subject>Oncology</subject><subject>opinion-2</subject><subject>Physiological aspects</subject><subject>Solid tumors</subject><subject>T cell receptors</subject><subject>Tumor microenvironment</subject><subject>Tumor Microenvironment - drug effects</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - immunology</subject><subject>Vascular Endothelial Growth Factor A - therapeutic use</subject><subject>Vesicular Transport Proteins - immunology</subject><subject>Vesicular Transport Proteins - therapeutic use</subject><issn>1759-4774</issn><issn>1759-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kl9rFDEUxQdRbK1-AF9kQBBfdr1JJsnEh0Ip9Q8UBNHnkMnemUnJJGsyI_Tbm2XrtisqeUjI-Z2T3MutqpcE1gRY-y4k612Iwa4pkHZN1aPqlEiuVo1s6ePDWTYn1bOcbwCEaCR7Wp1QxaFtOT-tvl6F0QTrwlDbsmOq3TQtIc4jJrO9rZe8k0yYnQmDiwMGZ_P7Om63Mc1LcLPDXORNbUfjPYYB8_PqSW98xhd3-1n1_cPVt8tPq-svHz9fXlyvrBB0XinogaA0BqChPXQWjOw4MZK1VnUtR4aGMwEb3gnse9v2UlGgtBHCWKCEnVXn-9zt0k24sRjmZLzeJjeZdKujcfpYCW7UQ_ypuaJEAZSAt3cBKf5YMM96ctmi9yZgXLIuTSVUclCyoK__QG_ikkIpT1OhOKOUN_BfCqhgikvG76nBeNQu9LH8zu6e1hecceANE02h1n-hytrg5GwM2Ltyf2R488AwovHzmKNfZhdDPgbJHrQp5pywP7SMgN7NlT7M1a4FraaqeF497PXB8XuQCkD3QC5SmYJ0X_q_U38BnLXbcg</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Fukumura, Dai</creator><creator>Kloepper, Jonas</creator><creator>Amoozgar, Zohreh</creator><creator>Duda, Dan G.</creator><creator>Jain, Rakesh K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180501</creationdate><title>Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges</title><author>Fukumura, Dai ; Kloepper, Jonas ; Amoozgar, Zohreh ; Duda, Dan G. ; Jain, Rakesh K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c662t-90f01e7aa0042f0bc0a7b51a738c9b85e3ea5360d5b6effc8f792022466ac0213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>692/699/67/1059/2325</topic><topic>692/699/67/1059/602</topic><topic>692/699/67/2328</topic><topic>692/699/67/322</topic><topic>692/699/67/580</topic><topic>Angiogenesis</topic><topic>Angiogenesis inhibitors</topic><topic>Angiogenesis Inhibitors - therapeutic use</topic><topic>Angiopoietin</topic><topic>Antiangiogenic agents</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Cancer research</topic><topic>Cancer treatment</topic><topic>Carcinogenesis</topic><topic>Dosage and administration</topic><topic>Drug delivery</topic><topic>Effector cells</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immune checkpoint inhibitors</topic><topic>Immune response</topic><topic>Immunosuppressive agents</topic><topic>Immunotherapy</topic><topic>Immunotherapy - trends</topic><topic>Medicine &amp; Public Health</topic><topic>Metastases</topic><topic>Methods</topic><topic>Microenvironments</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - immunology</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>Neovascularization, Pathologic - immunology</topic><topic>Oncology</topic><topic>opinion-2</topic><topic>Physiological aspects</topic><topic>Solid tumors</topic><topic>T cell receptors</topic><topic>Tumor microenvironment</topic><topic>Tumor Microenvironment - drug effects</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - immunology</topic><topic>Vascular Endothelial Growth Factor A - therapeutic use</topic><topic>Vesicular Transport Proteins - immunology</topic><topic>Vesicular Transport Proteins - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukumura, Dai</creatorcontrib><creatorcontrib>Kloepper, Jonas</creatorcontrib><creatorcontrib>Amoozgar, Zohreh</creatorcontrib><creatorcontrib>Duda, Dan G.</creatorcontrib><creatorcontrib>Jain, Rakesh K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature reviews. Clinical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukumura, Dai</au><au>Kloepper, Jonas</au><au>Amoozgar, Zohreh</au><au>Duda, Dan G.</au><au>Jain, Rakesh K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges</atitle><jtitle>Nature reviews. Clinical oncology</jtitle><stitle>Nat Rev Clin Oncol</stitle><addtitle>Nat Rev Clin Oncol</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>15</volume><issue>5</issue><spage>325</spage><epage>340</epage><pages>325-340</pages><issn>1759-4774</issn><eissn>1759-4782</eissn><abstract>The aberrant tumour vasculature and the associated angiogenic factors have been implicated in tumour immune evasion and progression. Herein, the authors provide their perspectives on how normalization of the tumour microenvironment using antiangiogenic agents could potentially increase the effectiveness of immunotherapies and improve the outcomes of patients with cancer. The authors also highlight important considerations for future research in this area. Immunotherapy has emerged as a major therapeutic modality in oncology. Currently, however, the majority of patients with cancer do not derive benefit from these treatments. Vascular abnormalities are a hallmark of most solid tumours and facilitate immune evasion. These abnormalities stem from elevated levels of proangiogenic factors, such as VEGF and angiopoietin 2 (ANG2); judicious use of drugs targeting these molecules can improve therapeutic responsiveness, partially owing to normalization of the abnormal tumour vasculature that can, in turn, increase the infiltration of immune effector cells into tumours and convert the intrinsically immunosuppressive tumour microenvironment (TME) to an immunosupportive one. Immunotherapy relies on the accumulation and activity of immune effector cells within the TME, and immune responses and vascular normalization seem to be reciprocally regulated. Thus, combining antiangiogenic therapies and immunotherapies might increase the effectiveness of immunotherapy and diminish the risk of immune-related adverse effects. In this Perspective, we outline the roles of VEGF and ANG2 in tumour immune evasion and progression, and discuss the evidence indicating that antiangiogenic agents can normalize the TME. We also suggest ways that antiangiogenic agents can be combined with immune-checkpoint inhibitors to potentially improve patient outcomes, and highlight avenues of future research.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29508855</pmid><doi>10.1038/nrclinonc.2018.29</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1759-4774
ispartof Nature reviews. Clinical oncology, 2018-05, Vol.15 (5), p.325-340
issn 1759-4774
1759-4782
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5921900
source MEDLINE; Alma/SFX Local Collection
subjects 692/699/67/1059/2325
692/699/67/1059/602
692/699/67/2328
692/699/67/322
692/699/67/580
Angiogenesis
Angiogenesis inhibitors
Angiogenesis Inhibitors - therapeutic use
Angiopoietin
Antiangiogenic agents
Cancer
Cancer immunotherapy
Cancer research
Cancer treatment
Carcinogenesis
Dosage and administration
Drug delivery
Effector cells
Health aspects
Humans
Immune checkpoint inhibitors
Immune response
Immunosuppressive agents
Immunotherapy
Immunotherapy - trends
Medicine & Public Health
Metastases
Methods
Microenvironments
Neoplasms - drug therapy
Neoplasms - immunology
Neovascularization, Pathologic - drug therapy
Neovascularization, Pathologic - immunology
Oncology
opinion-2
Physiological aspects
Solid tumors
T cell receptors
Tumor microenvironment
Tumor Microenvironment - drug effects
Tumor Microenvironment - immunology
Tumors
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - immunology
Vascular Endothelial Growth Factor A - therapeutic use
Vesicular Transport Proteins - immunology
Vesicular Transport Proteins - therapeutic use
title Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20cancer%20immunotherapy%20using%20antiangiogenics:%20opportunities%20and%20challenges&rft.jtitle=Nature%20reviews.%20Clinical%20oncology&rft.au=Fukumura,%20Dai&rft.date=2018-05-01&rft.volume=15&rft.issue=5&rft.spage=325&rft.epage=340&rft.pages=325-340&rft.issn=1759-4774&rft.eissn=1759-4782&rft_id=info:doi/10.1038/nrclinonc.2018.29&rft_dat=%3Cgale_pubme%3EA535054364%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2026395735&rft_id=info:pmid/29508855&rft_galeid=A535054364&rfr_iscdi=true