In Planta Processing of the SpCas9-gRNA Complex

In CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9)-mediated genome editing in plants, Streptococcus pyogenes Cas9 (SpCas9) protein and the required guide RNA (gRNA) are, in most cases, expressed from a stably integrated transgene. Generally, SpCas9...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and cell physiology 2017-11, Vol.58 (11), p.1857-1867
Hauptverfasser: Mikami, Masafumi, Toki, Seiichi, Endo, Masaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1867
container_issue 11
container_start_page 1857
container_title Plant and cell physiology
container_volume 58
creator Mikami, Masafumi
Toki, Seiichi
Endo, Masaki
description In CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9)-mediated genome editing in plants, Streptococcus pyogenes Cas9 (SpCas9) protein and the required guide RNA (gRNA) are, in most cases, expressed from a stably integrated transgene. Generally, SpCas9 protein is expressed from an RNA polymerase (pol) II promoter, while gRNA is expressed from a pol III promoter. However, pol III promoters have not been much characterized other than in model plants, making it difficult to select appropriate promoters for specific applications, while pol II transcripts have to be processed to generate functional gRNAs. Recently, successful processing of a pol II transcript into functional gRNAs using ribozyme or Csy4-RNA cleavage systems has been demonstrated. Here, we show that functional gRNAs can be efficiently processed using SpCas9 protein and plant endogenous RNA cleavage systems without the need for a specific RNA processing system. In our system, SpCas9 RNA and gRNA are both transcribed as a single RNA using a single pol II promoter; translated SpCas9 protein can be bound to this RNA and, finally, extra RNA sequences are trimmed by plant RNA processing systems to form a functional SpCas9-gRNA complex. The efficiency of targeted mutagenesis using our novel SpCas9-gRNA fused system was comparable with that of the SpCas9-gRNA system with ribozyme sequence, achieving rates of up to 100% in rice. Our results could be useful in developing stable SpCas9-gRNA expression systems and in RNA virus vector-mediated genome editing systems in plants.
doi_str_mv 10.1093/pcp/pcx154
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5921533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29040704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-11ca0448c36fd72e51933c28711d263c62136c5c18d872501d7cf198ab7a6fca3</originalsourceid><addsrcrecordid>eNpVkNtKw0AQhhdRbK3e-ACSayF2Zg_Z7I1QgodC0eLhetluNmkkJ7JR6tsbiRa9GGZg_vkGPkLOEa4QFJu3th1qh4IfkClyiaECwQ7JFIDREGSME3Li_RvAMDM4JhOqgIMEPiXzZR2sS1P3Jlh3jXXeF3UeNFnQb13w3CbGqzB_elgESVO1pdudkqPMlN6d_fQZeb29eUnuw9Xj3TJZrELLOe9DRGuA89iyKEsldQIVY5bGEjGlEbMRRRZZYTFOY0kFYCpthio2G2mizBo2I9cjt33fVC61ru47U-q2KyrTferGFPr_pi62Om8-tFAUBWMD4HIE2K7xvnPZ_hZBf2vTgzY9ahvCF3-_7aO_ntgXBjlocQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Planta Processing of the SpCas9-gRNA Complex</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Mikami, Masafumi ; Toki, Seiichi ; Endo, Masaki</creator><creatorcontrib>Mikami, Masafumi ; Toki, Seiichi ; Endo, Masaki</creatorcontrib><description>In CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9)-mediated genome editing in plants, Streptococcus pyogenes Cas9 (SpCas9) protein and the required guide RNA (gRNA) are, in most cases, expressed from a stably integrated transgene. Generally, SpCas9 protein is expressed from an RNA polymerase (pol) II promoter, while gRNA is expressed from a pol III promoter. However, pol III promoters have not been much characterized other than in model plants, making it difficult to select appropriate promoters for specific applications, while pol II transcripts have to be processed to generate functional gRNAs. Recently, successful processing of a pol II transcript into functional gRNAs using ribozyme or Csy4-RNA cleavage systems has been demonstrated. Here, we show that functional gRNAs can be efficiently processed using SpCas9 protein and plant endogenous RNA cleavage systems without the need for a specific RNA processing system. In our system, SpCas9 RNA and gRNA are both transcribed as a single RNA using a single pol II promoter; translated SpCas9 protein can be bound to this RNA and, finally, extra RNA sequences are trimmed by plant RNA processing systems to form a functional SpCas9-gRNA complex. The efficiency of targeted mutagenesis using our novel SpCas9-gRNA fused system was comparable with that of the SpCas9-gRNA system with ribozyme sequence, achieving rates of up to 100% in rice. Our results could be useful in developing stable SpCas9-gRNA expression systems and in RNA virus vector-mediated genome editing systems in plants.</description><identifier>ISSN: 0032-0781</identifier><identifier>EISSN: 1471-9053</identifier><identifier>DOI: 10.1093/pcp/pcx154</identifier><identifier>PMID: 29040704</identifier><language>eng</language><publisher>Japan: Oxford University Press</publisher><subject>Arabidopsis - genetics ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; CRISPR-Associated Protein 9 ; CRISPR-Cas Systems ; DNA Polymerase II - genetics ; Endonucleases - genetics ; Endonucleases - metabolism ; Mutagenesis, Site-Directed ; Mutation ; Oryza - genetics ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Rapid Papers ; RNA, Catalytic - genetics ; RNA, Guide, CRISPR-Cas Systems - genetics ; RNA, Guide, CRISPR-Cas Systems - metabolism</subject><ispartof>Plant and cell physiology, 2017-11, Vol.58 (11), p.1857-1867</ispartof><rights>The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.</rights><rights>The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-11ca0448c36fd72e51933c28711d263c62136c5c18d872501d7cf198ab7a6fca3</citedby><cites>FETCH-LOGICAL-c444t-11ca0448c36fd72e51933c28711d263c62136c5c18d872501d7cf198ab7a6fca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29040704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikami, Masafumi</creatorcontrib><creatorcontrib>Toki, Seiichi</creatorcontrib><creatorcontrib>Endo, Masaki</creatorcontrib><title>In Planta Processing of the SpCas9-gRNA Complex</title><title>Plant and cell physiology</title><addtitle>Plant Cell Physiol</addtitle><description>In CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9)-mediated genome editing in plants, Streptococcus pyogenes Cas9 (SpCas9) protein and the required guide RNA (gRNA) are, in most cases, expressed from a stably integrated transgene. Generally, SpCas9 protein is expressed from an RNA polymerase (pol) II promoter, while gRNA is expressed from a pol III promoter. However, pol III promoters have not been much characterized other than in model plants, making it difficult to select appropriate promoters for specific applications, while pol II transcripts have to be processed to generate functional gRNAs. Recently, successful processing of a pol II transcript into functional gRNAs using ribozyme or Csy4-RNA cleavage systems has been demonstrated. Here, we show that functional gRNAs can be efficiently processed using SpCas9 protein and plant endogenous RNA cleavage systems without the need for a specific RNA processing system. In our system, SpCas9 RNA and gRNA are both transcribed as a single RNA using a single pol II promoter; translated SpCas9 protein can be bound to this RNA and, finally, extra RNA sequences are trimmed by plant RNA processing systems to form a functional SpCas9-gRNA complex. The efficiency of targeted mutagenesis using our novel SpCas9-gRNA fused system was comparable with that of the SpCas9-gRNA system with ribozyme sequence, achieving rates of up to 100% in rice. Our results could be useful in developing stable SpCas9-gRNA expression systems and in RNA virus vector-mediated genome editing systems in plants.</description><subject>Arabidopsis - genetics</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>CRISPR-Associated Protein 9</subject><subject>CRISPR-Cas Systems</subject><subject>DNA Polymerase II - genetics</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Oryza - genetics</subject><subject>Plants, Genetically Modified</subject><subject>Promoter Regions, Genetic</subject><subject>Rapid Papers</subject><subject>RNA, Catalytic - genetics</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>RNA, Guide, CRISPR-Cas Systems - metabolism</subject><issn>0032-0781</issn><issn>1471-9053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkNtKw0AQhhdRbK3e-ACSayF2Zg_Z7I1QgodC0eLhetluNmkkJ7JR6tsbiRa9GGZg_vkGPkLOEa4QFJu3th1qh4IfkClyiaECwQ7JFIDREGSME3Li_RvAMDM4JhOqgIMEPiXzZR2sS1P3Jlh3jXXeF3UeNFnQb13w3CbGqzB_elgESVO1pdudkqPMlN6d_fQZeb29eUnuw9Xj3TJZrELLOe9DRGuA89iyKEsldQIVY5bGEjGlEbMRRRZZYTFOY0kFYCpthio2G2mizBo2I9cjt33fVC61ru47U-q2KyrTferGFPr_pi62Om8-tFAUBWMD4HIE2K7xvnPZ_hZBf2vTgzY9ahvCF3-_7aO_ntgXBjlocQ</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Mikami, Masafumi</creator><creator>Toki, Seiichi</creator><creator>Endo, Masaki</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20171101</creationdate><title>In Planta Processing of the SpCas9-gRNA Complex</title><author>Mikami, Masafumi ; Toki, Seiichi ; Endo, Masaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-11ca0448c36fd72e51933c28711d263c62136c5c18d872501d7cf198ab7a6fca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arabidopsis - genetics</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>CRISPR-Associated Protein 9</topic><topic>CRISPR-Cas Systems</topic><topic>DNA Polymerase II - genetics</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Oryza - genetics</topic><topic>Plants, Genetically Modified</topic><topic>Promoter Regions, Genetic</topic><topic>Rapid Papers</topic><topic>RNA, Catalytic - genetics</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>RNA, Guide, CRISPR-Cas Systems - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikami, Masafumi</creatorcontrib><creatorcontrib>Toki, Seiichi</creatorcontrib><creatorcontrib>Endo, Masaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant and cell physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikami, Masafumi</au><au>Toki, Seiichi</au><au>Endo, Masaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Planta Processing of the SpCas9-gRNA Complex</atitle><jtitle>Plant and cell physiology</jtitle><addtitle>Plant Cell Physiol</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>58</volume><issue>11</issue><spage>1857</spage><epage>1867</epage><pages>1857-1867</pages><issn>0032-0781</issn><eissn>1471-9053</eissn><abstract>In CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9)-mediated genome editing in plants, Streptococcus pyogenes Cas9 (SpCas9) protein and the required guide RNA (gRNA) are, in most cases, expressed from a stably integrated transgene. Generally, SpCas9 protein is expressed from an RNA polymerase (pol) II promoter, while gRNA is expressed from a pol III promoter. However, pol III promoters have not been much characterized other than in model plants, making it difficult to select appropriate promoters for specific applications, while pol II transcripts have to be processed to generate functional gRNAs. Recently, successful processing of a pol II transcript into functional gRNAs using ribozyme or Csy4-RNA cleavage systems has been demonstrated. Here, we show that functional gRNAs can be efficiently processed using SpCas9 protein and plant endogenous RNA cleavage systems without the need for a specific RNA processing system. In our system, SpCas9 RNA and gRNA are both transcribed as a single RNA using a single pol II promoter; translated SpCas9 protein can be bound to this RNA and, finally, extra RNA sequences are trimmed by plant RNA processing systems to form a functional SpCas9-gRNA complex. The efficiency of targeted mutagenesis using our novel SpCas9-gRNA fused system was comparable with that of the SpCas9-gRNA system with ribozyme sequence, achieving rates of up to 100% in rice. Our results could be useful in developing stable SpCas9-gRNA expression systems and in RNA virus vector-mediated genome editing systems in plants.</abstract><cop>Japan</cop><pub>Oxford University Press</pub><pmid>29040704</pmid><doi>10.1093/pcp/pcx154</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0781
ispartof Plant and cell physiology, 2017-11, Vol.58 (11), p.1857-1867
issn 0032-0781
1471-9053
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5921533
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Arabidopsis - genetics
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
CRISPR-Associated Protein 9
CRISPR-Cas Systems
DNA Polymerase II - genetics
Endonucleases - genetics
Endonucleases - metabolism
Mutagenesis, Site-Directed
Mutation
Oryza - genetics
Plants, Genetically Modified
Promoter Regions, Genetic
Rapid Papers
RNA, Catalytic - genetics
RNA, Guide, CRISPR-Cas Systems - genetics
RNA, Guide, CRISPR-Cas Systems - metabolism
title In Planta Processing of the SpCas9-gRNA Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Planta%20Processing%20of%20the%20SpCas9-gRNA%20Complex&rft.jtitle=Plant%20and%20cell%20physiology&rft.au=Mikami,%20Masafumi&rft.date=2017-11-01&rft.volume=58&rft.issue=11&rft.spage=1857&rft.epage=1867&rft.pages=1857-1867&rft.issn=0032-0781&rft.eissn=1471-9053&rft_id=info:doi/10.1093/pcp/pcx154&rft_dat=%3Cpubmed_cross%3E29040704%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29040704&rfr_iscdi=true