An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images
Unlike daily routine images, ultrasound images are usually monochrome and low-resolution. In ultrasound images, the cancer regions are usually blurred, vague margin and irregular in shape. Moreover, the features of cancer region are very similar to normal or benign tissues. Therefore, training ultra...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-04, Vol.8 (1), p.6600-12, Article 6600 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 6600 |
container_title | Scientific reports |
container_volume | 8 |
creator | Li, Hailiang Weng, Jian Shi, Yujian Gu, Wanrong Mao, Yijun Wang, Yonghua Liu, Weiwei Zhang, Jiajie |
description | Unlike daily routine images, ultrasound images are usually monochrome and low-resolution. In ultrasound images, the cancer regions are usually blurred, vague margin and irregular in shape. Moreover, the features of cancer region are very similar to normal or benign tissues. Therefore, training ultrasound images with original Convolutional Neural Network (CNN) directly is not satisfactory. In our study, inspired by state-of-the-art object detection network Faster R-CNN, we develop a detector which is more suitable for thyroid papillary carcinoma detection in ultrasound images. In order to improve the accuracy of the detection, we add a spatial constrained layer to CNN so that the detector can extract the features of surrounding region in which the cancer regions are residing. In addition, by concatenating the shallow and deep layers of the CNN, the detector can detect blurrier or smaller cancer regions. The experiments demonstrate that the potential of this new methodology can reduce the workload for pathologists and increase the objectivity of diagnoses. We find that 93:5% of papillary thyroid carcinoma regions could be detected automatically while 81:5% of benign and normal tissue could be excluded without the use of any additional immunohistochemical markers or human intervention. |
doi_str_mv | 10.1038/s41598-018-25005-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5920067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031404700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9d08b9cde4802bc4eec9292fa319640c4401cad8430404aaab5d112779528f713</originalsourceid><addsrcrecordid>eNp9kctOHDEQRS0ECgj4gSyQpWyy6aT8mm5vkBDKS0LKBtaWx66eMeqxG7sbaf4-ngzhkQXe2HId37rlS8hHBl8YiO5rkUzprgHWNVwBqKY9ICccpGq44Pzw1fmYnJdyD3UpriXTH8gx1y2A5O0JsVeRhs2Y0yN66hFHOqDNMcQVtWO9tm5N-5RraUI3hRRp6um03uYUPB3tGIbB5i11NjrMNEQ6D1O2Jc3RV127wnJGjno7FDx_2k_J3fdvt9c_m5vfP35dX900TkmYGu2hW2rnUXbAl04iOs01761geiHBSQnMWd9JARKktXapPGO8bbXiXd8ycUou97rjvNygdxirkcGMudrIW5NsMG8rMazNKj0apTnAoq0Cn58EcnqYsUxmE4rDOmDENBfDQXAptOgWFf30H3qf5hzreDuKVYP1fyvF95TLqZSM_bMZBmYXotmHaGqI5m-IZufi4vUYz0_-RVYBsQdKLcUV5pfe78j-AXexqFY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031404700</pqid></control><display><type>article</type><title>An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Li, Hailiang ; Weng, Jian ; Shi, Yujian ; Gu, Wanrong ; Mao, Yijun ; Wang, Yonghua ; Liu, Weiwei ; Zhang, Jiajie</creator><creatorcontrib>Li, Hailiang ; Weng, Jian ; Shi, Yujian ; Gu, Wanrong ; Mao, Yijun ; Wang, Yonghua ; Liu, Weiwei ; Zhang, Jiajie</creatorcontrib><description>Unlike daily routine images, ultrasound images are usually monochrome and low-resolution. In ultrasound images, the cancer regions are usually blurred, vague margin and irregular in shape. Moreover, the features of cancer region are very similar to normal or benign tissues. Therefore, training ultrasound images with original Convolutional Neural Network (CNN) directly is not satisfactory. In our study, inspired by state-of-the-art object detection network Faster R-CNN, we develop a detector which is more suitable for thyroid papillary carcinoma detection in ultrasound images. In order to improve the accuracy of the detection, we add a spatial constrained layer to CNN so that the detector can extract the features of surrounding region in which the cancer regions are residing. In addition, by concatenating the shallow and deep layers of the CNN, the detector can detect blurrier or smaller cancer regions. The experiments demonstrate that the potential of this new methodology can reduce the workload for pathologists and increase the objectivity of diagnoses. We find that 93:5% of papillary thyroid carcinoma regions could be detected automatically while 81:5% of benign and normal tissue could be excluded without the use of any additional immunohistochemical markers or human intervention.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-25005-7</identifier><identifier>PMID: 29700427</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 631/67/2321 ; 639/705/1042 ; Benign ; Cancer ; Humanities and Social Sciences ; multidisciplinary ; Neural networks ; Papillary thyroid carcinoma ; Science ; Science (multidisciplinary) ; Sensors ; Thyroid ; Thyroid cancer ; Thyroid gland ; Ultrasonic imaging ; Ultrasound</subject><ispartof>Scientific reports, 2018-04, Vol.8 (1), p.6600-12, Article 6600</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9d08b9cde4802bc4eec9292fa319640c4401cad8430404aaab5d112779528f713</citedby><cites>FETCH-LOGICAL-c540t-9d08b9cde4802bc4eec9292fa319640c4401cad8430404aaab5d112779528f713</cites><orcidid>0000-0001-6454-0565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920067/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920067/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29700427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hailiang</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Shi, Yujian</creatorcontrib><creatorcontrib>Gu, Wanrong</creatorcontrib><creatorcontrib>Mao, Yijun</creatorcontrib><creatorcontrib>Wang, Yonghua</creatorcontrib><creatorcontrib>Liu, Weiwei</creatorcontrib><creatorcontrib>Zhang, Jiajie</creatorcontrib><title>An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Unlike daily routine images, ultrasound images are usually monochrome and low-resolution. In ultrasound images, the cancer regions are usually blurred, vague margin and irregular in shape. Moreover, the features of cancer region are very similar to normal or benign tissues. Therefore, training ultrasound images with original Convolutional Neural Network (CNN) directly is not satisfactory. In our study, inspired by state-of-the-art object detection network Faster R-CNN, we develop a detector which is more suitable for thyroid papillary carcinoma detection in ultrasound images. In order to improve the accuracy of the detection, we add a spatial constrained layer to CNN so that the detector can extract the features of surrounding region in which the cancer regions are residing. In addition, by concatenating the shallow and deep layers of the CNN, the detector can detect blurrier or smaller cancer regions. The experiments demonstrate that the potential of this new methodology can reduce the workload for pathologists and increase the objectivity of diagnoses. We find that 93:5% of papillary thyroid carcinoma regions could be detected automatically while 81:5% of benign and normal tissue could be excluded without the use of any additional immunohistochemical markers or human intervention.</description><subject>119/118</subject><subject>631/67/2321</subject><subject>639/705/1042</subject><subject>Benign</subject><subject>Cancer</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Papillary thyroid carcinoma</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Thyroid</subject><subject>Thyroid cancer</subject><subject>Thyroid gland</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctOHDEQRS0ECgj4gSyQpWyy6aT8mm5vkBDKS0LKBtaWx66eMeqxG7sbaf4-ngzhkQXe2HId37rlS8hHBl8YiO5rkUzprgHWNVwBqKY9ICccpGq44Pzw1fmYnJdyD3UpriXTH8gx1y2A5O0JsVeRhs2Y0yN66hFHOqDNMcQVtWO9tm5N-5RraUI3hRRp6um03uYUPB3tGIbB5i11NjrMNEQ6D1O2Jc3RV127wnJGjno7FDx_2k_J3fdvt9c_m5vfP35dX900TkmYGu2hW2rnUXbAl04iOs01761geiHBSQnMWd9JARKktXapPGO8bbXiXd8ycUou97rjvNygdxirkcGMudrIW5NsMG8rMazNKj0apTnAoq0Cn58EcnqYsUxmE4rDOmDENBfDQXAptOgWFf30H3qf5hzreDuKVYP1fyvF95TLqZSM_bMZBmYXotmHaGqI5m-IZufi4vUYz0_-RVYBsQdKLcUV5pfe78j-AXexqFY</recordid><startdate>20180426</startdate><enddate>20180426</enddate><creator>Li, Hailiang</creator><creator>Weng, Jian</creator><creator>Shi, Yujian</creator><creator>Gu, Wanrong</creator><creator>Mao, Yijun</creator><creator>Wang, Yonghua</creator><creator>Liu, Weiwei</creator><creator>Zhang, Jiajie</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6454-0565</orcidid></search><sort><creationdate>20180426</creationdate><title>An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images</title><author>Li, Hailiang ; Weng, Jian ; Shi, Yujian ; Gu, Wanrong ; Mao, Yijun ; Wang, Yonghua ; Liu, Weiwei ; Zhang, Jiajie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9d08b9cde4802bc4eec9292fa319640c4401cad8430404aaab5d112779528f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>119/118</topic><topic>631/67/2321</topic><topic>639/705/1042</topic><topic>Benign</topic><topic>Cancer</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Papillary thyroid carcinoma</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Thyroid</topic><topic>Thyroid cancer</topic><topic>Thyroid gland</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hailiang</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Shi, Yujian</creatorcontrib><creatorcontrib>Gu, Wanrong</creatorcontrib><creatorcontrib>Mao, Yijun</creatorcontrib><creatorcontrib>Wang, Yonghua</creatorcontrib><creatorcontrib>Liu, Weiwei</creatorcontrib><creatorcontrib>Zhang, Jiajie</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hailiang</au><au>Weng, Jian</au><au>Shi, Yujian</au><au>Gu, Wanrong</au><au>Mao, Yijun</au><au>Wang, Yonghua</au><au>Liu, Weiwei</au><au>Zhang, Jiajie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-04-26</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>6600</spage><epage>12</epage><pages>6600-12</pages><artnum>6600</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Unlike daily routine images, ultrasound images are usually monochrome and low-resolution. In ultrasound images, the cancer regions are usually blurred, vague margin and irregular in shape. Moreover, the features of cancer region are very similar to normal or benign tissues. Therefore, training ultrasound images with original Convolutional Neural Network (CNN) directly is not satisfactory. In our study, inspired by state-of-the-art object detection network Faster R-CNN, we develop a detector which is more suitable for thyroid papillary carcinoma detection in ultrasound images. In order to improve the accuracy of the detection, we add a spatial constrained layer to CNN so that the detector can extract the features of surrounding region in which the cancer regions are residing. In addition, by concatenating the shallow and deep layers of the CNN, the detector can detect blurrier or smaller cancer regions. The experiments demonstrate that the potential of this new methodology can reduce the workload for pathologists and increase the objectivity of diagnoses. We find that 93:5% of papillary thyroid carcinoma regions could be detected automatically while 81:5% of benign and normal tissue could be excluded without the use of any additional immunohistochemical markers or human intervention.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29700427</pmid><doi>10.1038/s41598-018-25005-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6454-0565</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-04, Vol.8 (1), p.6600-12, Article 6600 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5920067 |
source | Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 119/118 631/67/2321 639/705/1042 Benign Cancer Humanities and Social Sciences multidisciplinary Neural networks Papillary thyroid carcinoma Science Science (multidisciplinary) Sensors Thyroid Thyroid cancer Thyroid gland Ultrasonic imaging Ultrasound |
title | An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20deep%20learning%20approach%20for%20detection%20of%20thyroid%20papillary%20cancer%20in%20ultrasound%20images&rft.jtitle=Scientific%20reports&rft.au=Li,%20Hailiang&rft.date=2018-04-26&rft.volume=8&rft.issue=1&rft.spage=6600&rft.epage=12&rft.pages=6600-12&rft.artnum=6600&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-25005-7&rft_dat=%3Cproquest_pubme%3E2031404700%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2031404700&rft_id=info:pmid/29700427&rfr_iscdi=true |