Local Moment Instability of Os in Honeycomb Li2.15Os0.85O3

Compounds with honeycomb structures occupied by strong spin orbit coupled (SOC) moments are considered to be candidate Kitaev quantum spin liquids. Here we present the first example of Os on a honeycomb structure, Li 2.15(3) Os 0.85(3) O 3 ( C 2/ c , a  = 5.09 Å, b  = 8.81 Å, c  = 9.83 Å, β  = 99.3°...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-04, Vol.8 (1), p.1-9, Article 6605
Hauptverfasser: Wallace, M. K., LaBarre, P. G., Li, Jun, Pi, S.-T., Pickett, W. E., Dessau, D. S., Haskel, D., Ramirez, A. P., Subramanian, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 1
container_title Scientific reports
container_volume 8
creator Wallace, M. K.
LaBarre, P. G.
Li, Jun
Pi, S.-T.
Pickett, W. E.
Dessau, D. S.
Haskel, D.
Ramirez, A. P.
Subramanian, M. A.
description Compounds with honeycomb structures occupied by strong spin orbit coupled (SOC) moments are considered to be candidate Kitaev quantum spin liquids. Here we present the first example of Os on a honeycomb structure, Li 2.15(3) Os 0.85(3) O 3 ( C 2/ c , a  = 5.09 Å, b  = 8.81 Å, c  = 9.83 Å, β  = 99.3°). Neutron diffraction shows large site disorder in the honeycomb layer and X-ray absorption spectroscopy indicates a valence state of Os (4.7 ± 0.2), consistent with the nominal concentration. We observe a transport band gap of Δ = 243 ± 23 meV, a large van Vleck susceptibility, and an effective moment of 0.85 μ B , much lower than expected from 70% Os(+5). No evidence of long range order is found above 0.10 K but a spin glass-like peak in ac-susceptibility is observed at 0.5 K. The specific heat displays an impurity spin contribution in addition to a power law ∝T (0.63±0.06) . Applied density functional theory (DFT) leads to a reduced moment, suggesting incipient itineracy of the valence electrons, and finding evidence that Li over stoichiometry leads to Os(4+)−Os(5+) mixed valence. This local picture is discussed in light of the site disorder and a possible underlying quantum spin liquid state.
doi_str_mv 10.1038/s41598-018-25028-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5919924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032433235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-9a82cbd06748180db56f245c284f1a475d2118a677b694a53e536108b57cde973</originalsourceid><addsrcrecordid>eNp9kUFP3DAQhS0EKgj2D_QUtRcu2Y7HdmL3UAmhFpAW7QXOluM4i1Fi0ziLtP--3gZBy4G5zEj-3puRHyGfKSwpMPktcSqULIHKEgVgng7ICQIXJTLEw3_mY7JI6RFyCVScqk_kGFUNwCo8Id9X0Zq-uI2DC1NxE9JkGt_7aVfErlinwofiOga3s3FoipXHJRXrBEsp1uyMHHWmT27x0k_J_a-fd5fX5Wp9dXN5sSotr-VUKiPRNi1UNZdUQtuIqkMuLEreUcNr0SKl0lR13VSKG8GcYBUF2Yjatk7V7JT8mH2fts3gWpsPHU2vn0Y_mHGno_H6_5fgH_QmPmuhqFLIs8GX2SCmyetk_eTsg40hODtpypmoQGTo_GXLGH9vXZr04JN1fW-Ci9ukEVi2Ysj26Nd36GPcjiH_wZ6iHHjFaaZwpuwYUxpd93oxBb2PUM8R6hyh_huhhixisyhlOGzc-Gb9geoPQ9GYVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031404641</pqid></control><display><type>article</type><title>Local Moment Instability of Os in Honeycomb Li2.15Os0.85O3</title><source>SpringerOpen</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Wallace, M. K. ; LaBarre, P. G. ; Li, Jun ; Pi, S.-T. ; Pickett, W. E. ; Dessau, D. S. ; Haskel, D. ; Ramirez, A. P. ; Subramanian, M. A.</creator><creatorcontrib>Wallace, M. K. ; LaBarre, P. G. ; Li, Jun ; Pi, S.-T. ; Pickett, W. E. ; Dessau, D. S. ; Haskel, D. ; Ramirez, A. P. ; Subramanian, M. A. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Compounds with honeycomb structures occupied by strong spin orbit coupled (SOC) moments are considered to be candidate Kitaev quantum spin liquids. Here we present the first example of Os on a honeycomb structure, Li 2.15(3) Os 0.85(3) O 3 ( C 2/ c , a  = 5.09 Å, b  = 8.81 Å, c  = 9.83 Å, β  = 99.3°). Neutron diffraction shows large site disorder in the honeycomb layer and X-ray absorption spectroscopy indicates a valence state of Os (4.7 ± 0.2), consistent with the nominal concentration. We observe a transport band gap of Δ = 243 ± 23 meV, a large van Vleck susceptibility, and an effective moment of 0.85 μ B , much lower than expected from 70% Os(+5). No evidence of long range order is found above 0.10 K but a spin glass-like peak in ac-susceptibility is observed at 0.5 K. The specific heat displays an impurity spin contribution in addition to a power law ∝T (0.63±0.06) . Applied density functional theory (DFT) leads to a reduced moment, suggesting incipient itineracy of the valence electrons, and finding evidence that Li over stoichiometry leads to Os(4+)−Os(5+) mixed valence. This local picture is discussed in light of the site disorder and a possible underlying quantum spin liquid state.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-25028-0</identifier><identifier>PMID: 29700362</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/119 ; 639/638/298/920 ; Absorption spectroscopy ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Condensed-matter physics ; Humanities and Social Sciences ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Magnetic materials ; multidisciplinary ; Neutron diffraction ; Neutrons ; Science ; Science (multidisciplinary) ; Specific heat ; Stoichiometry ; X-ray absorption spectroscopy</subject><ispartof>Scientific reports, 2018-04, Vol.8 (1), p.1-9, Article 6605</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-9a82cbd06748180db56f245c284f1a475d2118a677b694a53e536108b57cde973</citedby><cites>FETCH-LOGICAL-c478t-9a82cbd06748180db56f245c284f1a475d2118a677b694a53e536108b57cde973</cites><orcidid>0000-0002-6911-4474 ; 0000000269114474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919924/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919924/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1435605$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallace, M. K.</creatorcontrib><creatorcontrib>LaBarre, P. G.</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Pi, S.-T.</creatorcontrib><creatorcontrib>Pickett, W. E.</creatorcontrib><creatorcontrib>Dessau, D. S.</creatorcontrib><creatorcontrib>Haskel, D.</creatorcontrib><creatorcontrib>Ramirez, A. P.</creatorcontrib><creatorcontrib>Subramanian, M. A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Local Moment Instability of Os in Honeycomb Li2.15Os0.85O3</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Compounds with honeycomb structures occupied by strong spin orbit coupled (SOC) moments are considered to be candidate Kitaev quantum spin liquids. Here we present the first example of Os on a honeycomb structure, Li 2.15(3) Os 0.85(3) O 3 ( C 2/ c , a  = 5.09 Å, b  = 8.81 Å, c  = 9.83 Å, β  = 99.3°). Neutron diffraction shows large site disorder in the honeycomb layer and X-ray absorption spectroscopy indicates a valence state of Os (4.7 ± 0.2), consistent with the nominal concentration. We observe a transport band gap of Δ = 243 ± 23 meV, a large van Vleck susceptibility, and an effective moment of 0.85 μ B , much lower than expected from 70% Os(+5). No evidence of long range order is found above 0.10 K but a spin glass-like peak in ac-susceptibility is observed at 0.5 K. The specific heat displays an impurity spin contribution in addition to a power law ∝T (0.63±0.06) . Applied density functional theory (DFT) leads to a reduced moment, suggesting incipient itineracy of the valence electrons, and finding evidence that Li over stoichiometry leads to Os(4+)−Os(5+) mixed valence. This local picture is discussed in light of the site disorder and a possible underlying quantum spin liquid state.</description><subject>119/118</subject><subject>639/301/119</subject><subject>639/638/298/920</subject><subject>Absorption spectroscopy</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Condensed-matter physics</subject><subject>Humanities and Social Sciences</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Magnetic materials</subject><subject>multidisciplinary</subject><subject>Neutron diffraction</subject><subject>Neutrons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Specific heat</subject><subject>Stoichiometry</subject><subject>X-ray absorption spectroscopy</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUFP3DAQhS0EKgj2D_QUtRcu2Y7HdmL3UAmhFpAW7QXOluM4i1Fi0ziLtP--3gZBy4G5zEj-3puRHyGfKSwpMPktcSqULIHKEgVgng7ICQIXJTLEw3_mY7JI6RFyCVScqk_kGFUNwCo8Id9X0Zq-uI2DC1NxE9JkGt_7aVfErlinwofiOga3s3FoipXHJRXrBEsp1uyMHHWmT27x0k_J_a-fd5fX5Wp9dXN5sSotr-VUKiPRNi1UNZdUQtuIqkMuLEreUcNr0SKl0lR13VSKG8GcYBUF2Yjatk7V7JT8mH2fts3gWpsPHU2vn0Y_mHGno_H6_5fgH_QmPmuhqFLIs8GX2SCmyetk_eTsg40hODtpypmoQGTo_GXLGH9vXZr04JN1fW-Ci9ukEVi2Ysj26Nd36GPcjiH_wZ6iHHjFaaZwpuwYUxpd93oxBb2PUM8R6hyh_huhhixisyhlOGzc-Gb9geoPQ9GYVA</recordid><startdate>20180426</startdate><enddate>20180426</enddate><creator>Wallace, M. K.</creator><creator>LaBarre, P. G.</creator><creator>Li, Jun</creator><creator>Pi, S.-T.</creator><creator>Pickett, W. E.</creator><creator>Dessau, D. S.</creator><creator>Haskel, D.</creator><creator>Ramirez, A. P.</creator><creator>Subramanian, M. A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6911-4474</orcidid><orcidid>https://orcid.org/0000000269114474</orcidid></search><sort><creationdate>20180426</creationdate><title>Local Moment Instability of Os in Honeycomb Li2.15Os0.85O3</title><author>Wallace, M. K. ; LaBarre, P. G. ; Li, Jun ; Pi, S.-T. ; Pickett, W. E. ; Dessau, D. S. ; Haskel, D. ; Ramirez, A. P. ; Subramanian, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-9a82cbd06748180db56f245c284f1a475d2118a677b694a53e536108b57cde973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>119/118</topic><topic>639/301/119</topic><topic>639/638/298/920</topic><topic>Absorption spectroscopy</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Condensed-matter physics</topic><topic>Humanities and Social Sciences</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Magnetic materials</topic><topic>multidisciplinary</topic><topic>Neutron diffraction</topic><topic>Neutrons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Specific heat</topic><topic>Stoichiometry</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallace, M. K.</creatorcontrib><creatorcontrib>LaBarre, P. G.</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Pi, S.-T.</creatorcontrib><creatorcontrib>Pickett, W. E.</creatorcontrib><creatorcontrib>Dessau, D. S.</creatorcontrib><creatorcontrib>Haskel, D.</creatorcontrib><creatorcontrib>Ramirez, A. P.</creatorcontrib><creatorcontrib>Subramanian, M. A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallace, M. K.</au><au>LaBarre, P. G.</au><au>Li, Jun</au><au>Pi, S.-T.</au><au>Pickett, W. E.</au><au>Dessau, D. S.</au><au>Haskel, D.</au><au>Ramirez, A. P.</au><au>Subramanian, M. A.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Moment Instability of Os in Honeycomb Li2.15Os0.85O3</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2018-04-26</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>6605</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Compounds with honeycomb structures occupied by strong spin orbit coupled (SOC) moments are considered to be candidate Kitaev quantum spin liquids. Here we present the first example of Os on a honeycomb structure, Li 2.15(3) Os 0.85(3) O 3 ( C 2/ c , a  = 5.09 Å, b  = 8.81 Å, c  = 9.83 Å, β  = 99.3°). Neutron diffraction shows large site disorder in the honeycomb layer and X-ray absorption spectroscopy indicates a valence state of Os (4.7 ± 0.2), consistent with the nominal concentration. We observe a transport band gap of Δ = 243 ± 23 meV, a large van Vleck susceptibility, and an effective moment of 0.85 μ B , much lower than expected from 70% Os(+5). No evidence of long range order is found above 0.10 K but a spin glass-like peak in ac-susceptibility is observed at 0.5 K. The specific heat displays an impurity spin contribution in addition to a power law ∝T (0.63±0.06) . Applied density functional theory (DFT) leads to a reduced moment, suggesting incipient itineracy of the valence electrons, and finding evidence that Li over stoichiometry leads to Os(4+)−Os(5+) mixed valence. This local picture is discussed in light of the site disorder and a possible underlying quantum spin liquid state.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29700362</pmid><doi>10.1038/s41598-018-25028-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6911-4474</orcidid><orcidid>https://orcid.org/0000000269114474</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-04, Vol.8 (1), p.1-9, Article 6605
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5919924
source SpringerOpen; Nature Free; DOAJ Directory of Open Access Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects 119/118
639/301/119
639/638/298/920
Absorption spectroscopy
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Condensed-matter physics
Humanities and Social Sciences
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Magnetic materials
multidisciplinary
Neutron diffraction
Neutrons
Science
Science (multidisciplinary)
Specific heat
Stoichiometry
X-ray absorption spectroscopy
title Local Moment Instability of Os in Honeycomb Li2.15Os0.85O3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Moment%20Instability%20of%20Os%20in%20Honeycomb%20Li2.15Os0.85O3&rft.jtitle=Scientific%20reports&rft.au=Wallace,%20M.%20K.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-04-26&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=6605&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-25028-0&rft_dat=%3Cproquest_pubme%3E2032433235%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2031404641&rft_id=info:pmid/29700362&rfr_iscdi=true