Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use
Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2000-10, Vol.124 (2), p.885-897 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 897 |
---|---|
container_issue | 2 |
container_start_page | 885 |
container_title | Plant physiology (Bethesda) |
container_volume | 124 |
creator | LOPEZ-MILLAN, Ana Flor MORALES, Fermin ANDALUZ, Sofia GOGORCENA, Yolanda ABADIA, Anunciacion DE LAS RIVAS, Javier ABADIA, Javier |
description | Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 μM, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates. |
doi_str_mv | 10.1104/pp.124.2.885 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279488</jstor_id><sourcerecordid>4279488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-86eb47f969a10993424183182a55bb06166441c45745f61af4f79c89e1efda643</originalsourceid><addsrcrecordid>eNpdkd1rFDEUxQdR7Fp981EkiPjkjrn5mgR8qetXoVCo9jlkssk2y2wyTWbE_e9N2aVVX3ITzu_c3MtpmpeAWwDMPoxjC4S1pJWSP2oWwClZEs7k42aBcb1jKdVJ86yULcYYKLCnzUk1kq6jYtHoK1fGFIsrKHn0Y96YjD45N6GrlKaCpoTOc4ros_PBBhftvkWrGxM3lQ8RrUzuq3pWStiFwUyhPkxco8vf-42L6Lq4580Tb4biXhzraXP99cvP1fflxeW389XZxdJy3k1LKVzPOq-EMoCVoowwkBQkMZz3PRYgBGNgGe8Y9wKMZ75TVioHzq-NYPS0-XjoO879zq2ti1M2gx5z2Jm818kE_a8Sw43epF-aK1Ck2t8d7Tndzq5MeheKdcNgoktz0R2hRDIQFXzzH7hNc451NU1ACqgHrdD7A2RzKiU7fz8HYH0Xmh5HXUPTRNfQKv7679kf4GNKFXh7BEyxZvDZRBvKA8cJleTu21cHbFumlO9lRjrFpKR_ALc2p6Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218612183</pqid></control><display><type>article</type><title>Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>LOPEZ-MILLAN, Ana Flor ; MORALES, Fermin ; ANDALUZ, Sofia ; GOGORCENA, Yolanda ; ABADIA, Anunciacion ; DE LAS RIVAS, Javier ; ABADIA, Javier</creator><creatorcontrib>LOPEZ-MILLAN, Ana Flor ; MORALES, Fermin ; ANDALUZ, Sofia ; GOGORCENA, Yolanda ; ABADIA, Anunciacion ; DE LAS RIVAS, Javier ; ABADIA, Javier</creatorcontrib><description>Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 μM, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.124.2.885</identifier><identifier>PMID: 11027736</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Absorption. Translocation of ions and substances. Permeability ; Agronomy. Soil science and plant productions ; Anions ; Anions - metabolism ; Biological and medical sciences ; Carbon ; Carbon - metabolism ; Carbon fixation ; Carboxylic acids ; Chelates ; Chenopodiaceae - metabolism ; Citrates ; Economic plant physiology ; Environmental Stress and Adaptation ; Enzymes ; Flavins - metabolism ; FMN Reductase ; Fundamental and applied biological sciences. Psychology ; Iron ; Iron - deficiency ; Iron - metabolism ; Microscopy, Electron, Scanning ; Models, Biological ; NADH, NADPH Oxidoreductases - metabolism ; Nucleotides - metabolism ; Nutrient deficiency ; Nutrition. Photosynthesis. Respiration. Metabolism ; Organic acids ; Oxidation-Reduction ; Oxygen ; Oxygen Consumption ; Plant physiology and development ; Plant Proteins - metabolism ; Plant roots ; Plant Roots - enzymology ; Plant Roots - metabolism ; Plant Roots - ultrastructure ; Plants ; Quinones - metabolism ; Root tips ; Roots ; Sugar ; Sugar beets ; Water and solutes. Absorption, translocation and permeability</subject><ispartof>Plant physiology (Bethesda), 2000-10, Vol.124 (2), p.885-897</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists Oct 2000</rights><rights>Copyright © 2000, American Society of Plant Physiologists 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-86eb47f969a10993424183182a55bb06166441c45745f61af4f79c89e1efda643</citedby><cites>FETCH-LOGICAL-c557t-86eb47f969a10993424183182a55bb06166441c45745f61af4f79c89e1efda643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279488$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279488$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1523823$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11027736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LOPEZ-MILLAN, Ana Flor</creatorcontrib><creatorcontrib>MORALES, Fermin</creatorcontrib><creatorcontrib>ANDALUZ, Sofia</creatorcontrib><creatorcontrib>GOGORCENA, Yolanda</creatorcontrib><creatorcontrib>ABADIA, Anunciacion</creatorcontrib><creatorcontrib>DE LAS RIVAS, Javier</creatorcontrib><creatorcontrib>ABADIA, Javier</creatorcontrib><title>Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 μM, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates.</description><subject>Absorption. Translocation of ions and substances. Permeability</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Anions</subject><subject>Anions - metabolism</subject><subject>Biological and medical sciences</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon fixation</subject><subject>Carboxylic acids</subject><subject>Chelates</subject><subject>Chenopodiaceae - metabolism</subject><subject>Citrates</subject><subject>Economic plant physiology</subject><subject>Environmental Stress and Adaptation</subject><subject>Enzymes</subject><subject>Flavins - metabolism</subject><subject>FMN Reductase</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Iron</subject><subject>Iron - deficiency</subject><subject>Iron - metabolism</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Biological</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>Nucleotides - metabolism</subject><subject>Nutrient deficiency</subject><subject>Nutrition. Photosynthesis. Respiration. Metabolism</subject><subject>Organic acids</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><subject>Oxygen Consumption</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - metabolism</subject><subject>Plant roots</subject><subject>Plant Roots - enzymology</subject><subject>Plant Roots - metabolism</subject><subject>Plant Roots - ultrastructure</subject><subject>Plants</subject><subject>Quinones - metabolism</subject><subject>Root tips</subject><subject>Roots</subject><subject>Sugar</subject><subject>Sugar beets</subject><subject>Water and solutes. Absorption, translocation and permeability</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkd1rFDEUxQdR7Fp981EkiPjkjrn5mgR8qetXoVCo9jlkssk2y2wyTWbE_e9N2aVVX3ITzu_c3MtpmpeAWwDMPoxjC4S1pJWSP2oWwClZEs7k42aBcb1jKdVJ86yULcYYKLCnzUk1kq6jYtHoK1fGFIsrKHn0Y96YjD45N6GrlKaCpoTOc4ros_PBBhftvkWrGxM3lQ8RrUzuq3pWStiFwUyhPkxco8vf-42L6Lq4580Tb4biXhzraXP99cvP1fflxeW389XZxdJy3k1LKVzPOq-EMoCVoowwkBQkMZz3PRYgBGNgGe8Y9wKMZ75TVioHzq-NYPS0-XjoO879zq2ti1M2gx5z2Jm818kE_a8Sw43epF-aK1Ck2t8d7Tndzq5MeheKdcNgoktz0R2hRDIQFXzzH7hNc451NU1ACqgHrdD7A2RzKiU7fz8HYH0Xmh5HXUPTRNfQKv7679kf4GNKFXh7BEyxZvDZRBvKA8cJleTu21cHbFumlO9lRjrFpKR_ALc2p6Y</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>LOPEZ-MILLAN, Ana Flor</creator><creator>MORALES, Fermin</creator><creator>ANDALUZ, Sofia</creator><creator>GOGORCENA, Yolanda</creator><creator>ABADIA, Anunciacion</creator><creator>DE LAS RIVAS, Javier</creator><creator>ABADIA, Javier</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001001</creationdate><title>Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use</title><author>LOPEZ-MILLAN, Ana Flor ; MORALES, Fermin ; ANDALUZ, Sofia ; GOGORCENA, Yolanda ; ABADIA, Anunciacion ; DE LAS RIVAS, Javier ; ABADIA, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-86eb47f969a10993424183182a55bb06166441c45745f61af4f79c89e1efda643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Absorption. Translocation of ions and substances. Permeability</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Anions</topic><topic>Anions - metabolism</topic><topic>Biological and medical sciences</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon fixation</topic><topic>Carboxylic acids</topic><topic>Chelates</topic><topic>Chenopodiaceae - metabolism</topic><topic>Citrates</topic><topic>Economic plant physiology</topic><topic>Environmental Stress and Adaptation</topic><topic>Enzymes</topic><topic>Flavins - metabolism</topic><topic>FMN Reductase</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Iron</topic><topic>Iron - deficiency</topic><topic>Iron - metabolism</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Biological</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>Nucleotides - metabolism</topic><topic>Nutrient deficiency</topic><topic>Nutrition. Photosynthesis. Respiration. Metabolism</topic><topic>Organic acids</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><topic>Oxygen Consumption</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - metabolism</topic><topic>Plant roots</topic><topic>Plant Roots - enzymology</topic><topic>Plant Roots - metabolism</topic><topic>Plant Roots - ultrastructure</topic><topic>Plants</topic><topic>Quinones - metabolism</topic><topic>Root tips</topic><topic>Roots</topic><topic>Sugar</topic><topic>Sugar beets</topic><topic>Water and solutes. Absorption, translocation and permeability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LOPEZ-MILLAN, Ana Flor</creatorcontrib><creatorcontrib>MORALES, Fermin</creatorcontrib><creatorcontrib>ANDALUZ, Sofia</creatorcontrib><creatorcontrib>GOGORCENA, Yolanda</creatorcontrib><creatorcontrib>ABADIA, Anunciacion</creatorcontrib><creatorcontrib>DE LAS RIVAS, Javier</creatorcontrib><creatorcontrib>ABADIA, Javier</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LOPEZ-MILLAN, Ana Flor</au><au>MORALES, Fermin</au><au>ANDALUZ, Sofia</au><au>GOGORCENA, Yolanda</au><au>ABADIA, Anunciacion</au><au>DE LAS RIVAS, Javier</au><au>ABADIA, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2000-10-01</date><risdate>2000</risdate><volume>124</volume><issue>2</issue><spage>885</spage><epage>897</epage><pages>885-897</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 μM, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>11027736</pmid><doi>10.1104/pp.124.2.885</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2000-10, Vol.124 (2), p.885-897 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59192 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Absorption. Translocation of ions and substances. Permeability Agronomy. Soil science and plant productions Anions Anions - metabolism Biological and medical sciences Carbon Carbon - metabolism Carbon fixation Carboxylic acids Chelates Chenopodiaceae - metabolism Citrates Economic plant physiology Environmental Stress and Adaptation Enzymes Flavins - metabolism FMN Reductase Fundamental and applied biological sciences. Psychology Iron Iron - deficiency Iron - metabolism Microscopy, Electron, Scanning Models, Biological NADH, NADPH Oxidoreductases - metabolism Nucleotides - metabolism Nutrient deficiency Nutrition. Photosynthesis. Respiration. Metabolism Organic acids Oxidation-Reduction Oxygen Oxygen Consumption Plant physiology and development Plant Proteins - metabolism Plant roots Plant Roots - enzymology Plant Roots - metabolism Plant Roots - ultrastructure Plants Quinones - metabolism Root tips Roots Sugar Sugar beets Water and solutes. Absorption, translocation and permeability |
title | Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Responses%20of%20Sugar%20Beet%20Roots%20to%20Iron%20Deficiency.%20Changes%20in%20Carbon%20Assimilation%20and%20Oxygen%20Use&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=LOPEZ-MILLAN,%20Ana%20Flor&rft.date=2000-10-01&rft.volume=124&rft.issue=2&rft.spage=885&rft.epage=897&rft.pages=885-897&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.124.2.885&rft_dat=%3Cjstor_pubme%3E4279488%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218612183&rft_id=info:pmid/11027736&rft_jstor_id=4279488&rfr_iscdi=true |