Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use

Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2000-10, Vol.124 (2), p.885-897
Hauptverfasser: LOPEZ-MILLAN, Ana Flor, MORALES, Fermin, ANDALUZ, Sofia, GOGORCENA, Yolanda, ABADIA, Anunciacion, DE LAS RIVAS, Javier, ABADIA, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 897
container_issue 2
container_start_page 885
container_title Plant physiology (Bethesda)
container_volume 124
creator LOPEZ-MILLAN, Ana Flor
MORALES, Fermin
ANDALUZ, Sofia
GOGORCENA, Yolanda
ABADIA, Anunciacion
DE LAS RIVAS, Javier
ABADIA, Javier
description Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 μM, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates.
doi_str_mv 10.1104/pp.124.2.885
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279488</jstor_id><sourcerecordid>4279488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-86eb47f969a10993424183182a55bb06166441c45745f61af4f79c89e1efda643</originalsourceid><addsrcrecordid>eNpdkd1rFDEUxQdR7Fp981EkiPjkjrn5mgR8qetXoVCo9jlkssk2y2wyTWbE_e9N2aVVX3ITzu_c3MtpmpeAWwDMPoxjC4S1pJWSP2oWwClZEs7k42aBcb1jKdVJ86yULcYYKLCnzUk1kq6jYtHoK1fGFIsrKHn0Y96YjD45N6GrlKaCpoTOc4ros_PBBhftvkWrGxM3lQ8RrUzuq3pWStiFwUyhPkxco8vf-42L6Lq4580Tb4biXhzraXP99cvP1fflxeW389XZxdJy3k1LKVzPOq-EMoCVoowwkBQkMZz3PRYgBGNgGe8Y9wKMZ75TVioHzq-NYPS0-XjoO879zq2ti1M2gx5z2Jm818kE_a8Sw43epF-aK1Ck2t8d7Tndzq5MeheKdcNgoktz0R2hRDIQFXzzH7hNc451NU1ACqgHrdD7A2RzKiU7fz8HYH0Xmh5HXUPTRNfQKv7679kf4GNKFXh7BEyxZvDZRBvKA8cJleTu21cHbFumlO9lRjrFpKR_ALc2p6Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218612183</pqid></control><display><type>article</type><title>Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>LOPEZ-MILLAN, Ana Flor ; MORALES, Fermin ; ANDALUZ, Sofia ; GOGORCENA, Yolanda ; ABADIA, Anunciacion ; DE LAS RIVAS, Javier ; ABADIA, Javier</creator><creatorcontrib>LOPEZ-MILLAN, Ana Flor ; MORALES, Fermin ; ANDALUZ, Sofia ; GOGORCENA, Yolanda ; ABADIA, Anunciacion ; DE LAS RIVAS, Javier ; ABADIA, Javier</creatorcontrib><description>Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 μM, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.124.2.885</identifier><identifier>PMID: 11027736</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Absorption. Translocation of ions and substances. Permeability ; Agronomy. Soil science and plant productions ; Anions ; Anions - metabolism ; Biological and medical sciences ; Carbon ; Carbon - metabolism ; Carbon fixation ; Carboxylic acids ; Chelates ; Chenopodiaceae - metabolism ; Citrates ; Economic plant physiology ; Environmental Stress and Adaptation ; Enzymes ; Flavins - metabolism ; FMN Reductase ; Fundamental and applied biological sciences. Psychology ; Iron ; Iron - deficiency ; Iron - metabolism ; Microscopy, Electron, Scanning ; Models, Biological ; NADH, NADPH Oxidoreductases - metabolism ; Nucleotides - metabolism ; Nutrient deficiency ; Nutrition. Photosynthesis. Respiration. Metabolism ; Organic acids ; Oxidation-Reduction ; Oxygen ; Oxygen Consumption ; Plant physiology and development ; Plant Proteins - metabolism ; Plant roots ; Plant Roots - enzymology ; Plant Roots - metabolism ; Plant Roots - ultrastructure ; Plants ; Quinones - metabolism ; Root tips ; Roots ; Sugar ; Sugar beets ; Water and solutes. Absorption, translocation and permeability</subject><ispartof>Plant physiology (Bethesda), 2000-10, Vol.124 (2), p.885-897</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists Oct 2000</rights><rights>Copyright © 2000, American Society of Plant Physiologists 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-86eb47f969a10993424183182a55bb06166441c45745f61af4f79c89e1efda643</citedby><cites>FETCH-LOGICAL-c557t-86eb47f969a10993424183182a55bb06166441c45745f61af4f79c89e1efda643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279488$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279488$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1523823$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11027736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LOPEZ-MILLAN, Ana Flor</creatorcontrib><creatorcontrib>MORALES, Fermin</creatorcontrib><creatorcontrib>ANDALUZ, Sofia</creatorcontrib><creatorcontrib>GOGORCENA, Yolanda</creatorcontrib><creatorcontrib>ABADIA, Anunciacion</creatorcontrib><creatorcontrib>DE LAS RIVAS, Javier</creatorcontrib><creatorcontrib>ABADIA, Javier</creatorcontrib><title>Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 μM, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates.</description><subject>Absorption. Translocation of ions and substances. Permeability</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Anions</subject><subject>Anions - metabolism</subject><subject>Biological and medical sciences</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon fixation</subject><subject>Carboxylic acids</subject><subject>Chelates</subject><subject>Chenopodiaceae - metabolism</subject><subject>Citrates</subject><subject>Economic plant physiology</subject><subject>Environmental Stress and Adaptation</subject><subject>Enzymes</subject><subject>Flavins - metabolism</subject><subject>FMN Reductase</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Iron</subject><subject>Iron - deficiency</subject><subject>Iron - metabolism</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Biological</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>Nucleotides - metabolism</subject><subject>Nutrient deficiency</subject><subject>Nutrition. Photosynthesis. Respiration. Metabolism</subject><subject>Organic acids</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><subject>Oxygen Consumption</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - metabolism</subject><subject>Plant roots</subject><subject>Plant Roots - enzymology</subject><subject>Plant Roots - metabolism</subject><subject>Plant Roots - ultrastructure</subject><subject>Plants</subject><subject>Quinones - metabolism</subject><subject>Root tips</subject><subject>Roots</subject><subject>Sugar</subject><subject>Sugar beets</subject><subject>Water and solutes. Absorption, translocation and permeability</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkd1rFDEUxQdR7Fp981EkiPjkjrn5mgR8qetXoVCo9jlkssk2y2wyTWbE_e9N2aVVX3ITzu_c3MtpmpeAWwDMPoxjC4S1pJWSP2oWwClZEs7k42aBcb1jKdVJ86yULcYYKLCnzUk1kq6jYtHoK1fGFIsrKHn0Y96YjD45N6GrlKaCpoTOc4ros_PBBhftvkWrGxM3lQ8RrUzuq3pWStiFwUyhPkxco8vf-42L6Lq4580Tb4biXhzraXP99cvP1fflxeW389XZxdJy3k1LKVzPOq-EMoCVoowwkBQkMZz3PRYgBGNgGe8Y9wKMZ75TVioHzq-NYPS0-XjoO879zq2ti1M2gx5z2Jm818kE_a8Sw43epF-aK1Ck2t8d7Tndzq5MeheKdcNgoktz0R2hRDIQFXzzH7hNc451NU1ACqgHrdD7A2RzKiU7fz8HYH0Xmh5HXUPTRNfQKv7679kf4GNKFXh7BEyxZvDZRBvKA8cJleTu21cHbFumlO9lRjrFpKR_ALc2p6Y</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>LOPEZ-MILLAN, Ana Flor</creator><creator>MORALES, Fermin</creator><creator>ANDALUZ, Sofia</creator><creator>GOGORCENA, Yolanda</creator><creator>ABADIA, Anunciacion</creator><creator>DE LAS RIVAS, Javier</creator><creator>ABADIA, Javier</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001001</creationdate><title>Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use</title><author>LOPEZ-MILLAN, Ana Flor ; MORALES, Fermin ; ANDALUZ, Sofia ; GOGORCENA, Yolanda ; ABADIA, Anunciacion ; DE LAS RIVAS, Javier ; ABADIA, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-86eb47f969a10993424183182a55bb06166441c45745f61af4f79c89e1efda643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Absorption. Translocation of ions and substances. Permeability</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Anions</topic><topic>Anions - metabolism</topic><topic>Biological and medical sciences</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon fixation</topic><topic>Carboxylic acids</topic><topic>Chelates</topic><topic>Chenopodiaceae - metabolism</topic><topic>Citrates</topic><topic>Economic plant physiology</topic><topic>Environmental Stress and Adaptation</topic><topic>Enzymes</topic><topic>Flavins - metabolism</topic><topic>FMN Reductase</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Iron</topic><topic>Iron - deficiency</topic><topic>Iron - metabolism</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Biological</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>Nucleotides - metabolism</topic><topic>Nutrient deficiency</topic><topic>Nutrition. Photosynthesis. Respiration. Metabolism</topic><topic>Organic acids</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><topic>Oxygen Consumption</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - metabolism</topic><topic>Plant roots</topic><topic>Plant Roots - enzymology</topic><topic>Plant Roots - metabolism</topic><topic>Plant Roots - ultrastructure</topic><topic>Plants</topic><topic>Quinones - metabolism</topic><topic>Root tips</topic><topic>Roots</topic><topic>Sugar</topic><topic>Sugar beets</topic><topic>Water and solutes. Absorption, translocation and permeability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LOPEZ-MILLAN, Ana Flor</creatorcontrib><creatorcontrib>MORALES, Fermin</creatorcontrib><creatorcontrib>ANDALUZ, Sofia</creatorcontrib><creatorcontrib>GOGORCENA, Yolanda</creatorcontrib><creatorcontrib>ABADIA, Anunciacion</creatorcontrib><creatorcontrib>DE LAS RIVAS, Javier</creatorcontrib><creatorcontrib>ABADIA, Javier</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LOPEZ-MILLAN, Ana Flor</au><au>MORALES, Fermin</au><au>ANDALUZ, Sofia</au><au>GOGORCENA, Yolanda</au><au>ABADIA, Anunciacion</au><au>DE LAS RIVAS, Javier</au><au>ABADIA, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2000-10-01</date><risdate>2000</risdate><volume>124</volume><issue>2</issue><spage>885</spage><epage>897</epage><pages>885-897</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 μM, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>11027736</pmid><doi>10.1104/pp.124.2.885</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2000-10, Vol.124 (2), p.885-897
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59192
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Absorption. Translocation of ions and substances. Permeability
Agronomy. Soil science and plant productions
Anions
Anions - metabolism
Biological and medical sciences
Carbon
Carbon - metabolism
Carbon fixation
Carboxylic acids
Chelates
Chenopodiaceae - metabolism
Citrates
Economic plant physiology
Environmental Stress and Adaptation
Enzymes
Flavins - metabolism
FMN Reductase
Fundamental and applied biological sciences. Psychology
Iron
Iron - deficiency
Iron - metabolism
Microscopy, Electron, Scanning
Models, Biological
NADH, NADPH Oxidoreductases - metabolism
Nucleotides - metabolism
Nutrient deficiency
Nutrition. Photosynthesis. Respiration. Metabolism
Organic acids
Oxidation-Reduction
Oxygen
Oxygen Consumption
Plant physiology and development
Plant Proteins - metabolism
Plant roots
Plant Roots - enzymology
Plant Roots - metabolism
Plant Roots - ultrastructure
Plants
Quinones - metabolism
Root tips
Roots
Sugar
Sugar beets
Water and solutes. Absorption, translocation and permeability
title Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Responses%20of%20Sugar%20Beet%20Roots%20to%20Iron%20Deficiency.%20Changes%20in%20Carbon%20Assimilation%20and%20Oxygen%20Use&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=LOPEZ-MILLAN,%20Ana%20Flor&rft.date=2000-10-01&rft.volume=124&rft.issue=2&rft.spage=885&rft.epage=897&rft.pages=885-897&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.124.2.885&rft_dat=%3Cjstor_pubme%3E4279488%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218612183&rft_id=info:pmid/11027736&rft_jstor_id=4279488&rfr_iscdi=true