Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia
Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has...
Gespeichert in:
Veröffentlicht in: | Cell and tissue research 2018-05, Vol.372 (2), p.427-431 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 2 |
container_start_page | 427 |
container_title | Cell and tissue research |
container_volume | 372 |
creator | Prabhakar, Nanduri R. Peng, Ying-Jie Yuan, Guoxiang Nanduri, Jayasri |
description | Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has been implicated in causing autonomic abnormalities in IH-treated rodents and in sleep apnea patients. The purpose of this article is to review the emerging evidence showing that interactions between reactive oxygen species (ROS) and gaseous transmitters as a mechanism cause hyperactive CB by IH. Rodents treated with IH exhibit markedly elevated ROS in the CB, which is due to transcriptional upregulation of pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and insufficient transcriptional regulation of anti-oxidant enzymes by HIF-2. ROS, in turn, increases cystathionine γ-lyase (CSE)-dependent H
2
S production in the CB. Blockade of H
2
S synthesis prevents IH-evoked CB activation. However, the effects of ROS on H
2
S production are not due to direct effects on CSE enzyme activity but rather due to inactivation of heme oxygenase-2 (HO-2), a carbon monoxide (CO) producing enzyme. CO inhibits H
2
S production through inactivation of CSE by PKG-dependent phosphorylation. During IH, reduced CO production resulting from inactivation of HO-2 by ROS releases the inhibition of CO on CSE thereby increasing H
2
S. Inhibiting H
2
S synthesis prevented IH-evoked sympathetic activation and hypertension. |
doi_str_mv | 10.1007/s00441-018-2807-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5918151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A536151123</galeid><sourcerecordid>A536151123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-4aeab9877ef395c848e3c521eb70a4b1b70307d9e8da92d5aba46a5d07780b823</originalsourceid><addsrcrecordid>eNp1kt-L1DAQx4so3nr6B_giAUF86TlJ0yZ9EY5DT-FAEAXfwjRJd3N0kzVpj-t_b3p7v1aUPAxkPvOdzORbFK8pnFAA8SEBcE5LoLJkEkQJT4oV5RUrQQr5tFhBBawUTfPrqHiR0iUA5U3TPi-OWMsFNLxZFea7RT26K0vC9by2nkQ0TuOQCHpD1phsmBIZI_q0deNoYyLOE40xjM6QLpiZ3NTj6IIn3ZyzGbpB_Ug28y5cO3xZPOuzpH11G4-Ln58__Tj7Ul58O_96dnpR6qYRY8nRYtdKIWxftbWWXNpK14zaTgDyjuZQgTCtlQZbZmrskDdYGxBCQidZdVx83Ovupm5rjc5PiDioXXRbjLMK6NRhxruNWocrVbdU0ppmgfe3AjH8nmwa1dYlbYcB_bIHxUByqAFayOjbv9DLMEWfx8sUhZaJtmIP1BoHq5zvQ-6rF1F1WldN7klZlamTf1D5GLt1Onjbu3x_UPDuUcHG4jBuUhim5RPSIUj3oI4hpWj7-2VQUIuH1N5DKntILR5Sy2RvHm_xvuLONBlgeyDllF_b-DD6_1X_ADpZ0ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010927932</pqid></control><display><type>article</type><title>Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Prabhakar, Nanduri R. ; Peng, Ying-Jie ; Yuan, Guoxiang ; Nanduri, Jayasri</creator><creatorcontrib>Prabhakar, Nanduri R. ; Peng, Ying-Jie ; Yuan, Guoxiang ; Nanduri, Jayasri</creatorcontrib><description>Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has been implicated in causing autonomic abnormalities in IH-treated rodents and in sleep apnea patients. The purpose of this article is to review the emerging evidence showing that interactions between reactive oxygen species (ROS) and gaseous transmitters as a mechanism cause hyperactive CB by IH. Rodents treated with IH exhibit markedly elevated ROS in the CB, which is due to transcriptional upregulation of pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and insufficient transcriptional regulation of anti-oxidant enzymes by HIF-2. ROS, in turn, increases cystathionine γ-lyase (CSE)-dependent H
2
S production in the CB. Blockade of H
2
S synthesis prevents IH-evoked CB activation. However, the effects of ROS on H
2
S production are not due to direct effects on CSE enzyme activity but rather due to inactivation of heme oxygenase-2 (HO-2), a carbon monoxide (CO) producing enzyme. CO inhibits H
2
S production through inactivation of CSE by PKG-dependent phosphorylation. During IH, reduced CO production resulting from inactivation of HO-2 by ROS releases the inhibition of CO on CSE thereby increasing H
2
S. Inhibiting H
2
S synthesis prevented IH-evoked sympathetic activation and hypertension.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/s00441-018-2807-0</identifier><identifier>PMID: 29470646</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active oxygen ; Animals ; Apnea ; Biomedical and Life Sciences ; Biomedicine ; breathing ; Carbon monoxide ; Carotid body ; Carotid Body - metabolism ; Carotid Body - pathology ; Chemoreception (internal) ; cystathionine gamma-lyase ; enzyme activity ; Enzymes ; Gases - metabolism ; Gene regulation ; Heme ; heme oxygenase (biliverdin-producing) ; Human Genetics ; Humans ; Hydrogen sulfide ; Hydrogen Sulfide - metabolism ; Hypertension ; Hypoxia ; Hypoxia - metabolism ; Hypoxia - pathology ; Hypoxia-inducible factor 1 ; Hypoxia-inducible factors ; Molecular Medicine ; nerve endings ; nerve tissue ; Oxygenase ; patients ; Phosphorylation ; Proteomics ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Respiratory diseases ; respiratory tract diseases ; Review ; rodents ; Sleep ; Sleep apnea ; Sleep disorders ; Telecommunications equipment ; Transcription ; transcription (genetics)</subject><ispartof>Cell and tissue research, 2018-05, Vol.372 (2), p.427-431</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Cell and Tissue Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-4aeab9877ef395c848e3c521eb70a4b1b70307d9e8da92d5aba46a5d07780b823</citedby><cites>FETCH-LOGICAL-c667t-4aeab9877ef395c848e3c521eb70a4b1b70307d9e8da92d5aba46a5d07780b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00441-018-2807-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00441-018-2807-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29470646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prabhakar, Nanduri R.</creatorcontrib><creatorcontrib>Peng, Ying-Jie</creatorcontrib><creatorcontrib>Yuan, Guoxiang</creatorcontrib><creatorcontrib>Nanduri, Jayasri</creatorcontrib><title>Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><addtitle>Cell Tissue Res</addtitle><description>Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has been implicated in causing autonomic abnormalities in IH-treated rodents and in sleep apnea patients. The purpose of this article is to review the emerging evidence showing that interactions between reactive oxygen species (ROS) and gaseous transmitters as a mechanism cause hyperactive CB by IH. Rodents treated with IH exhibit markedly elevated ROS in the CB, which is due to transcriptional upregulation of pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and insufficient transcriptional regulation of anti-oxidant enzymes by HIF-2. ROS, in turn, increases cystathionine γ-lyase (CSE)-dependent H
2
S production in the CB. Blockade of H
2
S synthesis prevents IH-evoked CB activation. However, the effects of ROS on H
2
S production are not due to direct effects on CSE enzyme activity but rather due to inactivation of heme oxygenase-2 (HO-2), a carbon monoxide (CO) producing enzyme. CO inhibits H
2
S production through inactivation of CSE by PKG-dependent phosphorylation. During IH, reduced CO production resulting from inactivation of HO-2 by ROS releases the inhibition of CO on CSE thereby increasing H
2
S. Inhibiting H
2
S synthesis prevented IH-evoked sympathetic activation and hypertension.</description><subject>Active oxygen</subject><subject>Animals</subject><subject>Apnea</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>breathing</subject><subject>Carbon monoxide</subject><subject>Carotid body</subject><subject>Carotid Body - metabolism</subject><subject>Carotid Body - pathology</subject><subject>Chemoreception (internal)</subject><subject>cystathionine gamma-lyase</subject><subject>enzyme activity</subject><subject>Enzymes</subject><subject>Gases - metabolism</subject><subject>Gene regulation</subject><subject>Heme</subject><subject>heme oxygenase (biliverdin-producing)</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hydrogen sulfide</subject><subject>Hydrogen Sulfide - metabolism</subject><subject>Hypertension</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - pathology</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-inducible factors</subject><subject>Molecular Medicine</subject><subject>nerve endings</subject><subject>nerve tissue</subject><subject>Oxygenase</subject><subject>patients</subject><subject>Phosphorylation</subject><subject>Proteomics</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiratory diseases</subject><subject>respiratory tract diseases</subject><subject>Review</subject><subject>rodents</subject><subject>Sleep</subject><subject>Sleep apnea</subject><subject>Sleep disorders</subject><subject>Telecommunications equipment</subject><subject>Transcription</subject><subject>transcription (genetics)</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kt-L1DAQx4so3nr6B_giAUF86TlJ0yZ9EY5DT-FAEAXfwjRJd3N0kzVpj-t_b3p7v1aUPAxkPvOdzORbFK8pnFAA8SEBcE5LoLJkEkQJT4oV5RUrQQr5tFhBBawUTfPrqHiR0iUA5U3TPi-OWMsFNLxZFea7RT26K0vC9by2nkQ0TuOQCHpD1phsmBIZI_q0deNoYyLOE40xjM6QLpiZ3NTj6IIn3ZyzGbpB_Ug28y5cO3xZPOuzpH11G4-Ln58__Tj7Ul58O_96dnpR6qYRY8nRYtdKIWxftbWWXNpK14zaTgDyjuZQgTCtlQZbZmrskDdYGxBCQidZdVx83Ovupm5rjc5PiDioXXRbjLMK6NRhxruNWocrVbdU0ppmgfe3AjH8nmwa1dYlbYcB_bIHxUByqAFayOjbv9DLMEWfx8sUhZaJtmIP1BoHq5zvQ-6rF1F1WldN7klZlamTf1D5GLt1Onjbu3x_UPDuUcHG4jBuUhim5RPSIUj3oI4hpWj7-2VQUIuH1N5DKntILR5Sy2RvHm_xvuLONBlgeyDllF_b-DD6_1X_ADpZ0ag</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Prabhakar, Nanduri R.</creator><creator>Peng, Ying-Jie</creator><creator>Yuan, Guoxiang</creator><creator>Nanduri, Jayasri</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20180501</creationdate><title>Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia</title><author>Prabhakar, Nanduri R. ; Peng, Ying-Jie ; Yuan, Guoxiang ; Nanduri, Jayasri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-4aeab9877ef395c848e3c521eb70a4b1b70307d9e8da92d5aba46a5d07780b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active oxygen</topic><topic>Animals</topic><topic>Apnea</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>breathing</topic><topic>Carbon monoxide</topic><topic>Carotid body</topic><topic>Carotid Body - metabolism</topic><topic>Carotid Body - pathology</topic><topic>Chemoreception (internal)</topic><topic>cystathionine gamma-lyase</topic><topic>enzyme activity</topic><topic>Enzymes</topic><topic>Gases - metabolism</topic><topic>Gene regulation</topic><topic>Heme</topic><topic>heme oxygenase (biliverdin-producing)</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hydrogen sulfide</topic><topic>Hydrogen Sulfide - metabolism</topic><topic>Hypertension</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - pathology</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-inducible factors</topic><topic>Molecular Medicine</topic><topic>nerve endings</topic><topic>nerve tissue</topic><topic>Oxygenase</topic><topic>patients</topic><topic>Phosphorylation</topic><topic>Proteomics</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiratory diseases</topic><topic>respiratory tract diseases</topic><topic>Review</topic><topic>rodents</topic><topic>Sleep</topic><topic>Sleep apnea</topic><topic>Sleep disorders</topic><topic>Telecommunications equipment</topic><topic>Transcription</topic><topic>transcription (genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prabhakar, Nanduri R.</creatorcontrib><creatorcontrib>Peng, Ying-Jie</creatorcontrib><creatorcontrib>Yuan, Guoxiang</creatorcontrib><creatorcontrib>Nanduri, Jayasri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prabhakar, Nanduri R.</au><au>Peng, Ying-Jie</au><au>Yuan, Guoxiang</au><au>Nanduri, Jayasri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia</atitle><jtitle>Cell and tissue research</jtitle><stitle>Cell Tissue Res</stitle><addtitle>Cell Tissue Res</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>372</volume><issue>2</issue><spage>427</spage><epage>431</epage><pages>427-431</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has been implicated in causing autonomic abnormalities in IH-treated rodents and in sleep apnea patients. The purpose of this article is to review the emerging evidence showing that interactions between reactive oxygen species (ROS) and gaseous transmitters as a mechanism cause hyperactive CB by IH. Rodents treated with IH exhibit markedly elevated ROS in the CB, which is due to transcriptional upregulation of pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and insufficient transcriptional regulation of anti-oxidant enzymes by HIF-2. ROS, in turn, increases cystathionine γ-lyase (CSE)-dependent H
2
S production in the CB. Blockade of H
2
S synthesis prevents IH-evoked CB activation. However, the effects of ROS on H
2
S production are not due to direct effects on CSE enzyme activity but rather due to inactivation of heme oxygenase-2 (HO-2), a carbon monoxide (CO) producing enzyme. CO inhibits H
2
S production through inactivation of CSE by PKG-dependent phosphorylation. During IH, reduced CO production resulting from inactivation of HO-2 by ROS releases the inhibition of CO on CSE thereby increasing H
2
S. Inhibiting H
2
S synthesis prevented IH-evoked sympathetic activation and hypertension.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29470646</pmid><doi>10.1007/s00441-018-2807-0</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-766X |
ispartof | Cell and tissue research, 2018-05, Vol.372 (2), p.427-431 |
issn | 0302-766X 1432-0878 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5918151 |
source | MEDLINE; SpringerLink Journals |
subjects | Active oxygen Animals Apnea Biomedical and Life Sciences Biomedicine breathing Carbon monoxide Carotid body Carotid Body - metabolism Carotid Body - pathology Chemoreception (internal) cystathionine gamma-lyase enzyme activity Enzymes Gases - metabolism Gene regulation Heme heme oxygenase (biliverdin-producing) Human Genetics Humans Hydrogen sulfide Hydrogen Sulfide - metabolism Hypertension Hypoxia Hypoxia - metabolism Hypoxia - pathology Hypoxia-inducible factor 1 Hypoxia-inducible factors Molecular Medicine nerve endings nerve tissue Oxygenase patients Phosphorylation Proteomics Reactive oxygen species Reactive Oxygen Species - metabolism Respiratory diseases respiratory tract diseases Review rodents Sleep Sleep apnea Sleep disorders Telecommunications equipment Transcription transcription (genetics) |
title | Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20oxygen%20radicals%20and%20gaseous%20transmitters%20in%20carotid%20body%20activation%20by%20intermittent%20hypoxia&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Prabhakar,%20Nanduri%20R.&rft.date=2018-05-01&rft.volume=372&rft.issue=2&rft.spage=427&rft.epage=431&rft.pages=427-431&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/s00441-018-2807-0&rft_dat=%3Cgale_pubme%3EA536151123%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010927932&rft_id=info:pmid/29470646&rft_galeid=A536151123&rfr_iscdi=true |