Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia

Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 2018-05, Vol.372 (2), p.427-431
Hauptverfasser: Prabhakar, Nanduri R., Peng, Ying-Jie, Yuan, Guoxiang, Nanduri, Jayasri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 2
container_start_page 427
container_title Cell and tissue research
container_volume 372
creator Prabhakar, Nanduri R.
Peng, Ying-Jie
Yuan, Guoxiang
Nanduri, Jayasri
description Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has been implicated in causing autonomic abnormalities in IH-treated rodents and in sleep apnea patients. The purpose of this article is to review the emerging evidence showing that interactions between reactive oxygen species (ROS) and gaseous transmitters as a mechanism cause hyperactive CB by IH. Rodents treated with IH exhibit markedly elevated ROS in the CB, which is due to transcriptional upregulation of pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and insufficient transcriptional regulation of anti-oxidant enzymes by HIF-2. ROS, in turn, increases cystathionine γ-lyase (CSE)-dependent H 2 S production in the CB. Blockade of H 2 S synthesis prevents IH-evoked CB activation. However, the effects of ROS on H 2 S production are not due to direct effects on CSE enzyme activity but rather due to inactivation of heme oxygenase-2 (HO-2), a carbon monoxide (CO) producing enzyme. CO inhibits H 2 S production through inactivation of CSE by PKG-dependent phosphorylation. During IH, reduced CO production resulting from inactivation of HO-2 by ROS releases the inhibition of CO on CSE thereby increasing H 2 S. Inhibiting H 2 S synthesis prevented IH-evoked sympathetic activation and hypertension.
doi_str_mv 10.1007/s00441-018-2807-0
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5918151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A536151123</galeid><sourcerecordid>A536151123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-4aeab9877ef395c848e3c521eb70a4b1b70307d9e8da92d5aba46a5d07780b823</originalsourceid><addsrcrecordid>eNp1kt-L1DAQx4so3nr6B_giAUF86TlJ0yZ9EY5DT-FAEAXfwjRJd3N0kzVpj-t_b3p7v1aUPAxkPvOdzORbFK8pnFAA8SEBcE5LoLJkEkQJT4oV5RUrQQr5tFhBBawUTfPrqHiR0iUA5U3TPi-OWMsFNLxZFea7RT26K0vC9by2nkQ0TuOQCHpD1phsmBIZI_q0deNoYyLOE40xjM6QLpiZ3NTj6IIn3ZyzGbpB_Ug28y5cO3xZPOuzpH11G4-Ln58__Tj7Ul58O_96dnpR6qYRY8nRYtdKIWxftbWWXNpK14zaTgDyjuZQgTCtlQZbZmrskDdYGxBCQidZdVx83Ovupm5rjc5PiDioXXRbjLMK6NRhxruNWocrVbdU0ppmgfe3AjH8nmwa1dYlbYcB_bIHxUByqAFayOjbv9DLMEWfx8sUhZaJtmIP1BoHq5zvQ-6rF1F1WldN7klZlamTf1D5GLt1Onjbu3x_UPDuUcHG4jBuUhim5RPSIUj3oI4hpWj7-2VQUIuH1N5DKntILR5Sy2RvHm_xvuLONBlgeyDllF_b-DD6_1X_ADpZ0ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010927932</pqid></control><display><type>article</type><title>Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Prabhakar, Nanduri R. ; Peng, Ying-Jie ; Yuan, Guoxiang ; Nanduri, Jayasri</creator><creatorcontrib>Prabhakar, Nanduri R. ; Peng, Ying-Jie ; Yuan, Guoxiang ; Nanduri, Jayasri</creatorcontrib><description>Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has been implicated in causing autonomic abnormalities in IH-treated rodents and in sleep apnea patients. The purpose of this article is to review the emerging evidence showing that interactions between reactive oxygen species (ROS) and gaseous transmitters as a mechanism cause hyperactive CB by IH. Rodents treated with IH exhibit markedly elevated ROS in the CB, which is due to transcriptional upregulation of pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and insufficient transcriptional regulation of anti-oxidant enzymes by HIF-2. ROS, in turn, increases cystathionine γ-lyase (CSE)-dependent H 2 S production in the CB. Blockade of H 2 S synthesis prevents IH-evoked CB activation. However, the effects of ROS on H 2 S production are not due to direct effects on CSE enzyme activity but rather due to inactivation of heme oxygenase-2 (HO-2), a carbon monoxide (CO) producing enzyme. CO inhibits H 2 S production through inactivation of CSE by PKG-dependent phosphorylation. During IH, reduced CO production resulting from inactivation of HO-2 by ROS releases the inhibition of CO on CSE thereby increasing H 2 S. Inhibiting H 2 S synthesis prevented IH-evoked sympathetic activation and hypertension.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/s00441-018-2807-0</identifier><identifier>PMID: 29470646</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active oxygen ; Animals ; Apnea ; Biomedical and Life Sciences ; Biomedicine ; breathing ; Carbon monoxide ; Carotid body ; Carotid Body - metabolism ; Carotid Body - pathology ; Chemoreception (internal) ; cystathionine gamma-lyase ; enzyme activity ; Enzymes ; Gases - metabolism ; Gene regulation ; Heme ; heme oxygenase (biliverdin-producing) ; Human Genetics ; Humans ; Hydrogen sulfide ; Hydrogen Sulfide - metabolism ; Hypertension ; Hypoxia ; Hypoxia - metabolism ; Hypoxia - pathology ; Hypoxia-inducible factor 1 ; Hypoxia-inducible factors ; Molecular Medicine ; nerve endings ; nerve tissue ; Oxygenase ; patients ; Phosphorylation ; Proteomics ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Respiratory diseases ; respiratory tract diseases ; Review ; rodents ; Sleep ; Sleep apnea ; Sleep disorders ; Telecommunications equipment ; Transcription ; transcription (genetics)</subject><ispartof>Cell and tissue research, 2018-05, Vol.372 (2), p.427-431</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Cell and Tissue Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-4aeab9877ef395c848e3c521eb70a4b1b70307d9e8da92d5aba46a5d07780b823</citedby><cites>FETCH-LOGICAL-c667t-4aeab9877ef395c848e3c521eb70a4b1b70307d9e8da92d5aba46a5d07780b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00441-018-2807-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00441-018-2807-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29470646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prabhakar, Nanduri R.</creatorcontrib><creatorcontrib>Peng, Ying-Jie</creatorcontrib><creatorcontrib>Yuan, Guoxiang</creatorcontrib><creatorcontrib>Nanduri, Jayasri</creatorcontrib><title>Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><addtitle>Cell Tissue Res</addtitle><description>Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has been implicated in causing autonomic abnormalities in IH-treated rodents and in sleep apnea patients. The purpose of this article is to review the emerging evidence showing that interactions between reactive oxygen species (ROS) and gaseous transmitters as a mechanism cause hyperactive CB by IH. Rodents treated with IH exhibit markedly elevated ROS in the CB, which is due to transcriptional upregulation of pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and insufficient transcriptional regulation of anti-oxidant enzymes by HIF-2. ROS, in turn, increases cystathionine γ-lyase (CSE)-dependent H 2 S production in the CB. Blockade of H 2 S synthesis prevents IH-evoked CB activation. However, the effects of ROS on H 2 S production are not due to direct effects on CSE enzyme activity but rather due to inactivation of heme oxygenase-2 (HO-2), a carbon monoxide (CO) producing enzyme. CO inhibits H 2 S production through inactivation of CSE by PKG-dependent phosphorylation. During IH, reduced CO production resulting from inactivation of HO-2 by ROS releases the inhibition of CO on CSE thereby increasing H 2 S. Inhibiting H 2 S synthesis prevented IH-evoked sympathetic activation and hypertension.</description><subject>Active oxygen</subject><subject>Animals</subject><subject>Apnea</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>breathing</subject><subject>Carbon monoxide</subject><subject>Carotid body</subject><subject>Carotid Body - metabolism</subject><subject>Carotid Body - pathology</subject><subject>Chemoreception (internal)</subject><subject>cystathionine gamma-lyase</subject><subject>enzyme activity</subject><subject>Enzymes</subject><subject>Gases - metabolism</subject><subject>Gene regulation</subject><subject>Heme</subject><subject>heme oxygenase (biliverdin-producing)</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hydrogen sulfide</subject><subject>Hydrogen Sulfide - metabolism</subject><subject>Hypertension</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - pathology</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-inducible factors</subject><subject>Molecular Medicine</subject><subject>nerve endings</subject><subject>nerve tissue</subject><subject>Oxygenase</subject><subject>patients</subject><subject>Phosphorylation</subject><subject>Proteomics</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiratory diseases</subject><subject>respiratory tract diseases</subject><subject>Review</subject><subject>rodents</subject><subject>Sleep</subject><subject>Sleep apnea</subject><subject>Sleep disorders</subject><subject>Telecommunications equipment</subject><subject>Transcription</subject><subject>transcription (genetics)</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kt-L1DAQx4so3nr6B_giAUF86TlJ0yZ9EY5DT-FAEAXfwjRJd3N0kzVpj-t_b3p7v1aUPAxkPvOdzORbFK8pnFAA8SEBcE5LoLJkEkQJT4oV5RUrQQr5tFhBBawUTfPrqHiR0iUA5U3TPi-OWMsFNLxZFea7RT26K0vC9by2nkQ0TuOQCHpD1phsmBIZI_q0deNoYyLOE40xjM6QLpiZ3NTj6IIn3ZyzGbpB_Ug28y5cO3xZPOuzpH11G4-Ln58__Tj7Ul58O_96dnpR6qYRY8nRYtdKIWxftbWWXNpK14zaTgDyjuZQgTCtlQZbZmrskDdYGxBCQidZdVx83Ovupm5rjc5PiDioXXRbjLMK6NRhxruNWocrVbdU0ppmgfe3AjH8nmwa1dYlbYcB_bIHxUByqAFayOjbv9DLMEWfx8sUhZaJtmIP1BoHq5zvQ-6rF1F1WldN7klZlamTf1D5GLt1Onjbu3x_UPDuUcHG4jBuUhim5RPSIUj3oI4hpWj7-2VQUIuH1N5DKntILR5Sy2RvHm_xvuLONBlgeyDllF_b-DD6_1X_ADpZ0ag</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Prabhakar, Nanduri R.</creator><creator>Peng, Ying-Jie</creator><creator>Yuan, Guoxiang</creator><creator>Nanduri, Jayasri</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20180501</creationdate><title>Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia</title><author>Prabhakar, Nanduri R. ; Peng, Ying-Jie ; Yuan, Guoxiang ; Nanduri, Jayasri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-4aeab9877ef395c848e3c521eb70a4b1b70307d9e8da92d5aba46a5d07780b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active oxygen</topic><topic>Animals</topic><topic>Apnea</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>breathing</topic><topic>Carbon monoxide</topic><topic>Carotid body</topic><topic>Carotid Body - metabolism</topic><topic>Carotid Body - pathology</topic><topic>Chemoreception (internal)</topic><topic>cystathionine gamma-lyase</topic><topic>enzyme activity</topic><topic>Enzymes</topic><topic>Gases - metabolism</topic><topic>Gene regulation</topic><topic>Heme</topic><topic>heme oxygenase (biliverdin-producing)</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hydrogen sulfide</topic><topic>Hydrogen Sulfide - metabolism</topic><topic>Hypertension</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - pathology</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-inducible factors</topic><topic>Molecular Medicine</topic><topic>nerve endings</topic><topic>nerve tissue</topic><topic>Oxygenase</topic><topic>patients</topic><topic>Phosphorylation</topic><topic>Proteomics</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiratory diseases</topic><topic>respiratory tract diseases</topic><topic>Review</topic><topic>rodents</topic><topic>Sleep</topic><topic>Sleep apnea</topic><topic>Sleep disorders</topic><topic>Telecommunications equipment</topic><topic>Transcription</topic><topic>transcription (genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prabhakar, Nanduri R.</creatorcontrib><creatorcontrib>Peng, Ying-Jie</creatorcontrib><creatorcontrib>Yuan, Guoxiang</creatorcontrib><creatorcontrib>Nanduri, Jayasri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prabhakar, Nanduri R.</au><au>Peng, Ying-Jie</au><au>Yuan, Guoxiang</au><au>Nanduri, Jayasri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia</atitle><jtitle>Cell and tissue research</jtitle><stitle>Cell Tissue Res</stitle><addtitle>Cell Tissue Res</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>372</volume><issue>2</issue><spage>427</spage><epage>431</epage><pages>427-431</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has been implicated in causing autonomic abnormalities in IH-treated rodents and in sleep apnea patients. The purpose of this article is to review the emerging evidence showing that interactions between reactive oxygen species (ROS) and gaseous transmitters as a mechanism cause hyperactive CB by IH. Rodents treated with IH exhibit markedly elevated ROS in the CB, which is due to transcriptional upregulation of pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and insufficient transcriptional regulation of anti-oxidant enzymes by HIF-2. ROS, in turn, increases cystathionine γ-lyase (CSE)-dependent H 2 S production in the CB. Blockade of H 2 S synthesis prevents IH-evoked CB activation. However, the effects of ROS on H 2 S production are not due to direct effects on CSE enzyme activity but rather due to inactivation of heme oxygenase-2 (HO-2), a carbon monoxide (CO) producing enzyme. CO inhibits H 2 S production through inactivation of CSE by PKG-dependent phosphorylation. During IH, reduced CO production resulting from inactivation of HO-2 by ROS releases the inhibition of CO on CSE thereby increasing H 2 S. Inhibiting H 2 S synthesis prevented IH-evoked sympathetic activation and hypertension.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29470646</pmid><doi>10.1007/s00441-018-2807-0</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-766X
ispartof Cell and tissue research, 2018-05, Vol.372 (2), p.427-431
issn 0302-766X
1432-0878
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5918151
source MEDLINE; SpringerLink Journals
subjects Active oxygen
Animals
Apnea
Biomedical and Life Sciences
Biomedicine
breathing
Carbon monoxide
Carotid body
Carotid Body - metabolism
Carotid Body - pathology
Chemoreception (internal)
cystathionine gamma-lyase
enzyme activity
Enzymes
Gases - metabolism
Gene regulation
Heme
heme oxygenase (biliverdin-producing)
Human Genetics
Humans
Hydrogen sulfide
Hydrogen Sulfide - metabolism
Hypertension
Hypoxia
Hypoxia - metabolism
Hypoxia - pathology
Hypoxia-inducible factor 1
Hypoxia-inducible factors
Molecular Medicine
nerve endings
nerve tissue
Oxygenase
patients
Phosphorylation
Proteomics
Reactive oxygen species
Reactive Oxygen Species - metabolism
Respiratory diseases
respiratory tract diseases
Review
rodents
Sleep
Sleep apnea
Sleep disorders
Telecommunications equipment
Transcription
transcription (genetics)
title Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20oxygen%20radicals%20and%20gaseous%20transmitters%20in%20carotid%20body%20activation%20by%20intermittent%20hypoxia&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Prabhakar,%20Nanduri%20R.&rft.date=2018-05-01&rft.volume=372&rft.issue=2&rft.spage=427&rft.epage=431&rft.pages=427-431&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/s00441-018-2807-0&rft_dat=%3Cgale_pubme%3EA536151123%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010927932&rft_id=info:pmid/29470646&rft_galeid=A536151123&rfr_iscdi=true