Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?
Objective To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans. Methods Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a...
Gespeichert in:
Veröffentlicht in: | Skeletal radiology 2018-06, Vol.47 (6), p.839-845 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 845 |
---|---|
container_issue | 6 |
container_start_page | 839 |
container_title | Skeletal radiology |
container_volume | 47 |
creator | Wellenberg, Ruud H. H. Donders, Johanna C. E. Kloen, Peter Beenen, Ludo F. M. Kleipool, Roeland P. Maas, Mario Streekstra, Geert J. |
description | Objective
To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans.
Methods
Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel tibia plate and a titanium intramedullary nail respectively. Virtual monochromatic images were analyzed from 70 to 190 keV. Region-of-interest (ROI), used to determine fluctuations and inaccuracies in CT numbers of soft tissues and bone, were placed in muscle, fat, cortical bone and intramedullary tibia canal.
Results
The stainless-steel implant resulted in more pronounced metal artifacts compared to both titanium implants. CT number inaccuracies in 70 keV reference images were minimized at 130, 180 and 190 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Noise, measured as the standard deviation of pixels within a ROI, was minimized at 130, 150 and 140 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively.
Conclusion
Tailoring dual-energy CT protocols using implant specific virtual monochromatic images minimizes fluctuations and inaccuracies in CT numbers in bone and soft tissues compared to non-metal reference scans. |
doi_str_mv | 10.1007/s00256-017-2750-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5915501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A731343302</galeid><sourcerecordid>A731343302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-92df0d1aa8ef0e2e9db32638e2aee0de747e84401fc49d4eed6bfdca9ef54bca3</originalsourceid><addsrcrecordid>eNp1kstuFDEQRVuIiAyBD2CDLLFh4-BXv1iAolF4SJGyCWvLY5cnjrrtxnYH8id8Lm7NMBCUyAvLrnNvqexbVa8oOaWEtO8SIaxuMKEtZm1NMHtSrajgDDPa0KfVivBGYMZFd1w9T-mGFLCtm2fVMes6wVrer6pf5z-nIUTnt2iErAakYnZW6YwimFlnFzya01I2sxoweIjbO7S-Qj9cvkZTBLyXeYOmkPL-6MZpUD4jrYy6hYh0GCcVXQr-fekAh3qaQDvrdHEKOegwJOQBDJiPL6ojq4YEL_f7SfXt0_nV-gu-uPz8dX12gXXN24x7ZiwxVKkOLAEGvdlw1vAOmAIgBlrRQicEoVaL3oji3Wys0aoHW4uNVvyk-rDznebNCEaDz1ENcopuVPFOBuXk_Yp313IbbmXd07omtBi83RvE8H2GlOXokoahzAdhTpL2nHW8Z5QX9M1_6E2Yoy_jSUY4oeW_yvcdqK0aQDpvQ-mrF1N51nLKBeeEFer0AaosA6PTwYN15f6egO4EOoaUItjDjJTIJU5yFydZUiKXOMlF8_rfxzko_uSnAGwHpGnJEMS_Ez3u-htv0NkK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030103614</pqid></control><display><type>article</type><title>Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wellenberg, Ruud H. H. ; Donders, Johanna C. E. ; Kloen, Peter ; Beenen, Ludo F. M. ; Kleipool, Roeland P. ; Maas, Mario ; Streekstra, Geert J.</creator><creatorcontrib>Wellenberg, Ruud H. H. ; Donders, Johanna C. E. ; Kloen, Peter ; Beenen, Ludo F. M. ; Kleipool, Roeland P. ; Maas, Mario ; Streekstra, Geert J.</creatorcontrib><description>Objective
To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans.
Methods
Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel tibia plate and a titanium intramedullary nail respectively. Virtual monochromatic images were analyzed from 70 to 190 keV. Region-of-interest (ROI), used to determine fluctuations and inaccuracies in CT numbers of soft tissues and bone, were placed in muscle, fat, cortical bone and intramedullary tibia canal.
Results
The stainless-steel implant resulted in more pronounced metal artifacts compared to both titanium implants. CT number inaccuracies in 70 keV reference images were minimized at 130, 180 and 190 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Noise, measured as the standard deviation of pixels within a ROI, was minimized at 130, 150 and 140 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively.
Conclusion
Tailoring dual-energy CT protocols using implant specific virtual monochromatic images minimizes fluctuations and inaccuracies in CT numbers in bone and soft tissues compared to non-metal reference scans.</description><identifier>ISSN: 0364-2348</identifier><identifier>EISSN: 1432-2161</identifier><identifier>DOI: 10.1007/s00256-017-2750-2</identifier><identifier>PMID: 28842739</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cadaver ; Comparative analysis ; Computed tomography ; Cortical bone ; CT imaging ; Diagnostic imaging ; Energy consumption ; Humans ; Imaging ; Knee ; Medicine ; Medicine & Public Health ; Muscles ; Nuclear Medicine ; Orthopedics ; Pathology ; Prostheses and Implants ; Quantitative analysis ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiology ; Reduction ; Reduction (metal working) ; Soft tissues ; Stainless Steel ; Steel ; Surgical implants ; Tibia ; Tibia - diagnostic imaging ; Tibia - surgery ; Titanium ; Tomography, X-Ray Computed - methods ; Transplants & implants ; Variation</subject><ispartof>Skeletal radiology, 2018-06, Vol.47 (6), p.839-845</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Skeletal Radiology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-92df0d1aa8ef0e2e9db32638e2aee0de747e84401fc49d4eed6bfdca9ef54bca3</citedby><cites>FETCH-LOGICAL-c537t-92df0d1aa8ef0e2e9db32638e2aee0de747e84401fc49d4eed6bfdca9ef54bca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00256-017-2750-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00256-017-2750-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28842739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wellenberg, Ruud H. H.</creatorcontrib><creatorcontrib>Donders, Johanna C. E.</creatorcontrib><creatorcontrib>Kloen, Peter</creatorcontrib><creatorcontrib>Beenen, Ludo F. M.</creatorcontrib><creatorcontrib>Kleipool, Roeland P.</creatorcontrib><creatorcontrib>Maas, Mario</creatorcontrib><creatorcontrib>Streekstra, Geert J.</creatorcontrib><title>Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?</title><title>Skeletal radiology</title><addtitle>Skeletal Radiol</addtitle><addtitle>Skeletal Radiol</addtitle><description>Objective
To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans.
Methods
Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel tibia plate and a titanium intramedullary nail respectively. Virtual monochromatic images were analyzed from 70 to 190 keV. Region-of-interest (ROI), used to determine fluctuations and inaccuracies in CT numbers of soft tissues and bone, were placed in muscle, fat, cortical bone and intramedullary tibia canal.
Results
The stainless-steel implant resulted in more pronounced metal artifacts compared to both titanium implants. CT number inaccuracies in 70 keV reference images were minimized at 130, 180 and 190 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Noise, measured as the standard deviation of pixels within a ROI, was minimized at 130, 150 and 140 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively.
Conclusion
Tailoring dual-energy CT protocols using implant specific virtual monochromatic images minimizes fluctuations and inaccuracies in CT numbers in bone and soft tissues compared to non-metal reference scans.</description><subject>Cadaver</subject><subject>Comparative analysis</subject><subject>Computed tomography</subject><subject>Cortical bone</subject><subject>CT imaging</subject><subject>Diagnostic imaging</subject><subject>Energy consumption</subject><subject>Humans</subject><subject>Imaging</subject><subject>Knee</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Muscles</subject><subject>Nuclear Medicine</subject><subject>Orthopedics</subject><subject>Pathology</subject><subject>Prostheses and Implants</subject><subject>Quantitative analysis</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiology</subject><subject>Reduction</subject><subject>Reduction (metal working)</subject><subject>Soft tissues</subject><subject>Stainless Steel</subject><subject>Steel</subject><subject>Surgical implants</subject><subject>Tibia</subject><subject>Tibia - diagnostic imaging</subject><subject>Tibia - surgery</subject><subject>Titanium</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Transplants & implants</subject><subject>Variation</subject><issn>0364-2348</issn><issn>1432-2161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kstuFDEQRVuIiAyBD2CDLLFh4-BXv1iAolF4SJGyCWvLY5cnjrrtxnYH8id8Lm7NMBCUyAvLrnNvqexbVa8oOaWEtO8SIaxuMKEtZm1NMHtSrajgDDPa0KfVivBGYMZFd1w9T-mGFLCtm2fVMes6wVrer6pf5z-nIUTnt2iErAakYnZW6YwimFlnFzya01I2sxoweIjbO7S-Qj9cvkZTBLyXeYOmkPL-6MZpUD4jrYy6hYh0GCcVXQr-fekAh3qaQDvrdHEKOegwJOQBDJiPL6ojq4YEL_f7SfXt0_nV-gu-uPz8dX12gXXN24x7ZiwxVKkOLAEGvdlw1vAOmAIgBlrRQicEoVaL3oji3Wys0aoHW4uNVvyk-rDznebNCEaDz1ENcopuVPFOBuXk_Yp313IbbmXd07omtBi83RvE8H2GlOXokoahzAdhTpL2nHW8Z5QX9M1_6E2Yoy_jSUY4oeW_yvcdqK0aQDpvQ-mrF1N51nLKBeeEFer0AaosA6PTwYN15f6egO4EOoaUItjDjJTIJU5yFydZUiKXOMlF8_rfxzko_uSnAGwHpGnJEMS_Ez3u-htv0NkK</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Wellenberg, Ruud H. H.</creator><creator>Donders, Johanna C. E.</creator><creator>Kloen, Peter</creator><creator>Beenen, Ludo F. M.</creator><creator>Kleipool, Roeland P.</creator><creator>Maas, Mario</creator><creator>Streekstra, Geert J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180601</creationdate><title>Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?</title><author>Wellenberg, Ruud H. H. ; Donders, Johanna C. E. ; Kloen, Peter ; Beenen, Ludo F. M. ; Kleipool, Roeland P. ; Maas, Mario ; Streekstra, Geert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-92df0d1aa8ef0e2e9db32638e2aee0de747e84401fc49d4eed6bfdca9ef54bca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cadaver</topic><topic>Comparative analysis</topic><topic>Computed tomography</topic><topic>Cortical bone</topic><topic>CT imaging</topic><topic>Diagnostic imaging</topic><topic>Energy consumption</topic><topic>Humans</topic><topic>Imaging</topic><topic>Knee</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Muscles</topic><topic>Nuclear Medicine</topic><topic>Orthopedics</topic><topic>Pathology</topic><topic>Prostheses and Implants</topic><topic>Quantitative analysis</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiology</topic><topic>Reduction</topic><topic>Reduction (metal working)</topic><topic>Soft tissues</topic><topic>Stainless Steel</topic><topic>Steel</topic><topic>Surgical implants</topic><topic>Tibia</topic><topic>Tibia - diagnostic imaging</topic><topic>Tibia - surgery</topic><topic>Titanium</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Transplants & implants</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wellenberg, Ruud H. H.</creatorcontrib><creatorcontrib>Donders, Johanna C. E.</creatorcontrib><creatorcontrib>Kloen, Peter</creatorcontrib><creatorcontrib>Beenen, Ludo F. M.</creatorcontrib><creatorcontrib>Kleipool, Roeland P.</creatorcontrib><creatorcontrib>Maas, Mario</creatorcontrib><creatorcontrib>Streekstra, Geert J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Skeletal radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wellenberg, Ruud H. H.</au><au>Donders, Johanna C. E.</au><au>Kloen, Peter</au><au>Beenen, Ludo F. M.</au><au>Kleipool, Roeland P.</au><au>Maas, Mario</au><au>Streekstra, Geert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?</atitle><jtitle>Skeletal radiology</jtitle><stitle>Skeletal Radiol</stitle><addtitle>Skeletal Radiol</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>47</volume><issue>6</issue><spage>839</spage><epage>845</epage><pages>839-845</pages><issn>0364-2348</issn><eissn>1432-2161</eissn><abstract>Objective
To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans.
Methods
Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel tibia plate and a titanium intramedullary nail respectively. Virtual monochromatic images were analyzed from 70 to 190 keV. Region-of-interest (ROI), used to determine fluctuations and inaccuracies in CT numbers of soft tissues and bone, were placed in muscle, fat, cortical bone and intramedullary tibia canal.
Results
The stainless-steel implant resulted in more pronounced metal artifacts compared to both titanium implants. CT number inaccuracies in 70 keV reference images were minimized at 130, 180 and 190 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Noise, measured as the standard deviation of pixels within a ROI, was minimized at 130, 150 and 140 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively.
Conclusion
Tailoring dual-energy CT protocols using implant specific virtual monochromatic images minimizes fluctuations and inaccuracies in CT numbers in bone and soft tissues compared to non-metal reference scans.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28842739</pmid><doi>10.1007/s00256-017-2750-2</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-2348 |
ispartof | Skeletal radiology, 2018-06, Vol.47 (6), p.839-845 |
issn | 0364-2348 1432-2161 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5915501 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Cadaver Comparative analysis Computed tomography Cortical bone CT imaging Diagnostic imaging Energy consumption Humans Imaging Knee Medicine Medicine & Public Health Muscles Nuclear Medicine Orthopedics Pathology Prostheses and Implants Quantitative analysis Radiographic Image Interpretation, Computer-Assisted - methods Radiology Reduction Reduction (metal working) Soft tissues Stainless Steel Steel Surgical implants Tibia Tibia - diagnostic imaging Tibia - surgery Titanium Tomography, X-Ray Computed - methods Transplants & implants Variation |
title | Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20metal%20artifact%20reduction%20using%20dual-energy%20CT%20with%20pre-metal%20and%20post-metal%20implant%20cadaver%20comparison:%20are%20implant%20specific%20protocols%20needed?&rft.jtitle=Skeletal%20radiology&rft.au=Wellenberg,%20Ruud%20H.%20H.&rft.date=2018-06-01&rft.volume=47&rft.issue=6&rft.spage=839&rft.epage=845&rft.pages=839-845&rft.issn=0364-2348&rft.eissn=1432-2161&rft_id=info:doi/10.1007/s00256-017-2750-2&rft_dat=%3Cgale_pubme%3EA731343302%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030103614&rft_id=info:pmid/28842739&rft_galeid=A731343302&rfr_iscdi=true |