Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus

Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2000-09, Vol.124 (1), p.331-342
Hauptverfasser: Brian J. Green, Wei-Ye Li, Manhart, James R., Theodore C. Fox, Summer, Elizabeth J., Kennedy, Robert A., Pierce, Sidney K., Rumpho, Mary E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 342
container_issue 1
container_start_page 331
container_title Plant physiology (Bethesda)
container_volume 124
creator Brian J. Green
Wei-Ye Li
Manhart, James R.
Theodore C. Fox
Summer, Elizabeth J.
Kennedy, Robert A.
Pierce, Sidney K.
Rumpho, Mary E.
description Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplast maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.
doi_str_mv 10.1104/pp.124.1.331
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279432</jstor_id><sourcerecordid>4279432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-cd7c5cdfe4ead591e9ff59ccdecc0e106c74eee91c2a3da285ed2ba93ea5199c3</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhleIiobCjSNCPiBOSbC9dnYtcYmiUJAa6KGcLcc723Vx7K1nF5H_xQ_EJVE_TpzsmXnmnVeaKYo3jM4Zo-Jj388ZF3M2L0v2rJgwWfIZl6J-XkwozX9a1-q0eIl4QyllJRMvilNGVc2FqCbFn030fkQ7W_pr48mq8zHF3hscyDo0Efe7rYvocE4uuzjkOAwd5HhKrrq9Nz-ja8hligO4QDbGhQGCCRamxITmido5BCDr330CRBcDWcUwuDACaWPKnWFPNjnTIclCeQRZbhGyEIntIfxn79toPYz4qjhpjUd4fXzPih-f11erL7OL7-dfV8uLmZULNsxsU1lpmxYEmEYqBqptpbK2AWspMLqwlQAAxSw3ZWN4LaHhW6NKMJIpZcuz4tNBtx-3O2gshCEZr_vkdibtdTROP60E1-nr-EvnYaLK7R-O7SnejoCD3jm04L0JEEfUFeeylEL8F2TVolaqkhmcHkCbImKC9t4Lo_ruGnTf63wNmul8DRl_99j_I_iw_gy8PwIGrfFtyrtz-MBJJpS68_f2gN3gENN9WfAqF3n5F8LJzUY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17689975</pqid></control><display><type>article</type><title>Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus</title><source>MEDLINE</source><source>JSTOR Complete Journals</source><source>EZB Electronic Journals Library</source><source>Oxford Journals</source><creator>Brian J. Green ; Wei-Ye Li ; Manhart, James R. ; Theodore C. Fox ; Summer, Elizabeth J. ; Kennedy, Robert A. ; Pierce, Sidney K. ; Rumpho, Mary E.</creator><creatorcontrib>Brian J. Green ; Wei-Ye Li ; Manhart, James R. ; Theodore C. Fox ; Summer, Elizabeth J. ; Kennedy, Robert A. ; Pierce, Sidney K. ; Rumpho, Mary E.</creatorcontrib><description>Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplast maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.124.1.331</identifier><identifier>PMID: 10982447</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Algae ; Algal Proteins - biosynthesis ; Algal Proteins - metabolism ; Animals ; Biochemistry. Physiology. Immunology ; Biological and medical sciences ; Blotting, Southern ; Cell Biology and Signal Transduction ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Chloroplasts ; Chloroplasts - genetics ; Chloroplasts - metabolism ; DNA, Plant - analysis ; Electron Transport ; Electrophoresis, Polyacrylamide Gel ; Elysia chlorotica ; Eukaryota - genetics ; Eukaryota - growth &amp; development ; Eukaryota - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Genomes ; Immunoblotting ; Invertebrates ; Marine ; Metabolism ; Mollusca ; Mollusca - genetics ; Mollusca - growth &amp; development ; Mollusca - metabolism ; Photosynthesis ; Photosynthesis, respiration. Anabolism, catabolism ; Photosynthetic Reaction Center Complex Proteins - metabolism ; Physiology. Development ; Plant physiology and development ; Plants ; Plastids ; Seas ; Slugs ; Symbiosis ; Thylakoids ; Thylakoids - metabolism ; Vaucheria litorea</subject><ispartof>Plant physiology (Bethesda), 2000-09, Vol.124 (1), p.331-342</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><rights>2000 INIST-CNRS</rights><rights>Copyright © 2000, American Society of Plant Physiologists 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-cd7c5cdfe4ead591e9ff59ccdecc0e106c74eee91c2a3da285ed2ba93ea5199c3</citedby><cites>FETCH-LOGICAL-c561t-cd7c5cdfe4ead591e9ff59ccdecc0e106c74eee91c2a3da285ed2ba93ea5199c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279432$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279432$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1514994$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10982447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brian J. Green</creatorcontrib><creatorcontrib>Wei-Ye Li</creatorcontrib><creatorcontrib>Manhart, James R.</creatorcontrib><creatorcontrib>Theodore C. Fox</creatorcontrib><creatorcontrib>Summer, Elizabeth J.</creatorcontrib><creatorcontrib>Kennedy, Robert A.</creatorcontrib><creatorcontrib>Pierce, Sidney K.</creatorcontrib><creatorcontrib>Rumpho, Mary E.</creatorcontrib><title>Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplast maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.</description><subject>Algae</subject><subject>Algal Proteins - biosynthesis</subject><subject>Algal Proteins - metabolism</subject><subject>Animals</subject><subject>Biochemistry. Physiology. Immunology</subject><subject>Biological and medical sciences</subject><subject>Blotting, Southern</subject><subject>Cell Biology and Signal Transduction</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Chloroplasts</subject><subject>Chloroplasts - genetics</subject><subject>Chloroplasts - metabolism</subject><subject>DNA, Plant - analysis</subject><subject>Electron Transport</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Elysia chlorotica</subject><subject>Eukaryota - genetics</subject><subject>Eukaryota - growth &amp; development</subject><subject>Eukaryota - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genomes</subject><subject>Immunoblotting</subject><subject>Invertebrates</subject><subject>Marine</subject><subject>Metabolism</subject><subject>Mollusca</subject><subject>Mollusca - genetics</subject><subject>Mollusca - growth &amp; development</subject><subject>Mollusca - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>Photosynthetic Reaction Center Complex Proteins - metabolism</subject><subject>Physiology. Development</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plastids</subject><subject>Seas</subject><subject>Slugs</subject><subject>Symbiosis</subject><subject>Thylakoids</subject><subject>Thylakoids - metabolism</subject><subject>Vaucheria litorea</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1vEzEQhleIiobCjSNCPiBOSbC9dnYtcYmiUJAa6KGcLcc723Vx7K1nF5H_xQ_EJVE_TpzsmXnmnVeaKYo3jM4Zo-Jj388ZF3M2L0v2rJgwWfIZl6J-XkwozX9a1-q0eIl4QyllJRMvilNGVc2FqCbFn030fkQ7W_pr48mq8zHF3hscyDo0Efe7rYvocE4uuzjkOAwd5HhKrrq9Nz-ja8hligO4QDbGhQGCCRamxITmido5BCDr330CRBcDWcUwuDACaWPKnWFPNjnTIclCeQRZbhGyEIntIfxn79toPYz4qjhpjUd4fXzPih-f11erL7OL7-dfV8uLmZULNsxsU1lpmxYEmEYqBqptpbK2AWspMLqwlQAAxSw3ZWN4LaHhW6NKMJIpZcuz4tNBtx-3O2gshCEZr_vkdibtdTROP60E1-nr-EvnYaLK7R-O7SnejoCD3jm04L0JEEfUFeeylEL8F2TVolaqkhmcHkCbImKC9t4Lo_ruGnTf63wNmul8DRl_99j_I_iw_gy8PwIGrfFtyrtz-MBJJpS68_f2gN3gENN9WfAqF3n5F8LJzUY</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Brian J. Green</creator><creator>Wei-Ye Li</creator><creator>Manhart, James R.</creator><creator>Theodore C. Fox</creator><creator>Summer, Elizabeth J.</creator><creator>Kennedy, Robert A.</creator><creator>Pierce, Sidney K.</creator><creator>Rumpho, Mary E.</creator><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000901</creationdate><title>Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus</title><author>Brian J. Green ; Wei-Ye Li ; Manhart, James R. ; Theodore C. Fox ; Summer, Elizabeth J. ; Kennedy, Robert A. ; Pierce, Sidney K. ; Rumpho, Mary E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-cd7c5cdfe4ead591e9ff59ccdecc0e106c74eee91c2a3da285ed2ba93ea5199c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algae</topic><topic>Algal Proteins - biosynthesis</topic><topic>Algal Proteins - metabolism</topic><topic>Animals</topic><topic>Biochemistry. Physiology. Immunology</topic><topic>Biological and medical sciences</topic><topic>Blotting, Southern</topic><topic>Cell Biology and Signal Transduction</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Chloroplasts</topic><topic>Chloroplasts - genetics</topic><topic>Chloroplasts - metabolism</topic><topic>DNA, Plant - analysis</topic><topic>Electron Transport</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Elysia chlorotica</topic><topic>Eukaryota - genetics</topic><topic>Eukaryota - growth &amp; development</topic><topic>Eukaryota - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genomes</topic><topic>Immunoblotting</topic><topic>Invertebrates</topic><topic>Marine</topic><topic>Metabolism</topic><topic>Mollusca</topic><topic>Mollusca - genetics</topic><topic>Mollusca - growth &amp; development</topic><topic>Mollusca - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>Photosynthetic Reaction Center Complex Proteins - metabolism</topic><topic>Physiology. Development</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plastids</topic><topic>Seas</topic><topic>Slugs</topic><topic>Symbiosis</topic><topic>Thylakoids</topic><topic>Thylakoids - metabolism</topic><topic>Vaucheria litorea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brian J. Green</creatorcontrib><creatorcontrib>Wei-Ye Li</creatorcontrib><creatorcontrib>Manhart, James R.</creatorcontrib><creatorcontrib>Theodore C. Fox</creatorcontrib><creatorcontrib>Summer, Elizabeth J.</creatorcontrib><creatorcontrib>Kennedy, Robert A.</creatorcontrib><creatorcontrib>Pierce, Sidney K.</creatorcontrib><creatorcontrib>Rumpho, Mary E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brian J. Green</au><au>Wei-Ye Li</au><au>Manhart, James R.</au><au>Theodore C. Fox</au><au>Summer, Elizabeth J.</au><au>Kennedy, Robert A.</au><au>Pierce, Sidney K.</au><au>Rumpho, Mary E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2000-09-01</date><risdate>2000</risdate><volume>124</volume><issue>1</issue><spage>331</spage><epage>342</epage><pages>331-342</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplast maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>10982447</pmid><doi>10.1104/pp.124.1.331</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2000-09, Vol.124 (1), p.331-342
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59147
source MEDLINE; JSTOR Complete Journals; EZB Electronic Journals Library; Oxford Journals
subjects Algae
Algal Proteins - biosynthesis
Algal Proteins - metabolism
Animals
Biochemistry. Physiology. Immunology
Biological and medical sciences
Blotting, Southern
Cell Biology and Signal Transduction
Cell Nucleus - genetics
Cell Nucleus - metabolism
Chloroplasts
Chloroplasts - genetics
Chloroplasts - metabolism
DNA, Plant - analysis
Electron Transport
Electrophoresis, Polyacrylamide Gel
Elysia chlorotica
Eukaryota - genetics
Eukaryota - growth & development
Eukaryota - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Genomes
Immunoblotting
Invertebrates
Marine
Metabolism
Mollusca
Mollusca - genetics
Mollusca - growth & development
Mollusca - metabolism
Photosynthesis
Photosynthesis, respiration. Anabolism, catabolism
Photosynthetic Reaction Center Complex Proteins - metabolism
Physiology. Development
Plant physiology and development
Plants
Plastids
Seas
Slugs
Symbiosis
Thylakoids
Thylakoids - metabolism
Vaucheria litorea
title Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mollusc-Algal%20Chloroplast%20Endosymbiosis.%20Photosynthesis,%20Thylakoid%20Protein%20Maintenance,%20and%20Chloroplast%20Gene%20Expression%20Continue%20for%20Many%20Months%20in%20the%20Absence%20of%20the%20Algal%20Nucleus&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Brian%20J.%20Green&rft.date=2000-09-01&rft.volume=124&rft.issue=1&rft.spage=331&rft.epage=342&rft.pages=331-342&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.124.1.331&rft_dat=%3Cjstor_pubme%3E4279432%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17689975&rft_id=info:pmid/10982447&rft_jstor_id=4279432&rfr_iscdi=true