Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus
Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2000-09, Vol.124 (1), p.331-342 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 342 |
---|---|
container_issue | 1 |
container_start_page | 331 |
container_title | Plant physiology (Bethesda) |
container_volume | 124 |
creator | Brian J. Green Wei-Ye Li Manhart, James R. Theodore C. Fox Summer, Elizabeth J. Kennedy, Robert A. Pierce, Sidney K. Rumpho, Mary E. |
description | Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplast maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes. |
doi_str_mv | 10.1104/pp.124.1.331 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279432</jstor_id><sourcerecordid>4279432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-cd7c5cdfe4ead591e9ff59ccdecc0e106c74eee91c2a3da285ed2ba93ea5199c3</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhleIiobCjSNCPiBOSbC9dnYtcYmiUJAa6KGcLcc723Vx7K1nF5H_xQ_EJVE_TpzsmXnmnVeaKYo3jM4Zo-Jj388ZF3M2L0v2rJgwWfIZl6J-XkwozX9a1-q0eIl4QyllJRMvilNGVc2FqCbFn030fkQ7W_pr48mq8zHF3hscyDo0Efe7rYvocE4uuzjkOAwd5HhKrrq9Nz-ja8hligO4QDbGhQGCCRamxITmido5BCDr330CRBcDWcUwuDACaWPKnWFPNjnTIclCeQRZbhGyEIntIfxn79toPYz4qjhpjUd4fXzPih-f11erL7OL7-dfV8uLmZULNsxsU1lpmxYEmEYqBqptpbK2AWspMLqwlQAAxSw3ZWN4LaHhW6NKMJIpZcuz4tNBtx-3O2gshCEZr_vkdibtdTROP60E1-nr-EvnYaLK7R-O7SnejoCD3jm04L0JEEfUFeeylEL8F2TVolaqkhmcHkCbImKC9t4Lo_ruGnTf63wNmul8DRl_99j_I_iw_gy8PwIGrfFtyrtz-MBJJpS68_f2gN3gENN9WfAqF3n5F8LJzUY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17689975</pqid></control><display><type>article</type><title>Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus</title><source>MEDLINE</source><source>JSTOR Complete Journals</source><source>EZB Electronic Journals Library</source><source>Oxford Journals</source><creator>Brian J. Green ; Wei-Ye Li ; Manhart, James R. ; Theodore C. Fox ; Summer, Elizabeth J. ; Kennedy, Robert A. ; Pierce, Sidney K. ; Rumpho, Mary E.</creator><creatorcontrib>Brian J. Green ; Wei-Ye Li ; Manhart, James R. ; Theodore C. Fox ; Summer, Elizabeth J. ; Kennedy, Robert A. ; Pierce, Sidney K. ; Rumpho, Mary E.</creatorcontrib><description>Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplast maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.124.1.331</identifier><identifier>PMID: 10982447</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Algae ; Algal Proteins - biosynthesis ; Algal Proteins - metabolism ; Animals ; Biochemistry. Physiology. Immunology ; Biological and medical sciences ; Blotting, Southern ; Cell Biology and Signal Transduction ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Chloroplasts ; Chloroplasts - genetics ; Chloroplasts - metabolism ; DNA, Plant - analysis ; Electron Transport ; Electrophoresis, Polyacrylamide Gel ; Elysia chlorotica ; Eukaryota - genetics ; Eukaryota - growth & development ; Eukaryota - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Genomes ; Immunoblotting ; Invertebrates ; Marine ; Metabolism ; Mollusca ; Mollusca - genetics ; Mollusca - growth & development ; Mollusca - metabolism ; Photosynthesis ; Photosynthesis, respiration. Anabolism, catabolism ; Photosynthetic Reaction Center Complex Proteins - metabolism ; Physiology. Development ; Plant physiology and development ; Plants ; Plastids ; Seas ; Slugs ; Symbiosis ; Thylakoids ; Thylakoids - metabolism ; Vaucheria litorea</subject><ispartof>Plant physiology (Bethesda), 2000-09, Vol.124 (1), p.331-342</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><rights>2000 INIST-CNRS</rights><rights>Copyright © 2000, American Society of Plant Physiologists 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-cd7c5cdfe4ead591e9ff59ccdecc0e106c74eee91c2a3da285ed2ba93ea5199c3</citedby><cites>FETCH-LOGICAL-c561t-cd7c5cdfe4ead591e9ff59ccdecc0e106c74eee91c2a3da285ed2ba93ea5199c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279432$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279432$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1514994$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10982447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brian J. Green</creatorcontrib><creatorcontrib>Wei-Ye Li</creatorcontrib><creatorcontrib>Manhart, James R.</creatorcontrib><creatorcontrib>Theodore C. Fox</creatorcontrib><creatorcontrib>Summer, Elizabeth J.</creatorcontrib><creatorcontrib>Kennedy, Robert A.</creatorcontrib><creatorcontrib>Pierce, Sidney K.</creatorcontrib><creatorcontrib>Rumpho, Mary E.</creatorcontrib><title>Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplast maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.</description><subject>Algae</subject><subject>Algal Proteins - biosynthesis</subject><subject>Algal Proteins - metabolism</subject><subject>Animals</subject><subject>Biochemistry. Physiology. Immunology</subject><subject>Biological and medical sciences</subject><subject>Blotting, Southern</subject><subject>Cell Biology and Signal Transduction</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Chloroplasts</subject><subject>Chloroplasts - genetics</subject><subject>Chloroplasts - metabolism</subject><subject>DNA, Plant - analysis</subject><subject>Electron Transport</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Elysia chlorotica</subject><subject>Eukaryota - genetics</subject><subject>Eukaryota - growth & development</subject><subject>Eukaryota - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genomes</subject><subject>Immunoblotting</subject><subject>Invertebrates</subject><subject>Marine</subject><subject>Metabolism</subject><subject>Mollusca</subject><subject>Mollusca - genetics</subject><subject>Mollusca - growth & development</subject><subject>Mollusca - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>Photosynthetic Reaction Center Complex Proteins - metabolism</subject><subject>Physiology. Development</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plastids</subject><subject>Seas</subject><subject>Slugs</subject><subject>Symbiosis</subject><subject>Thylakoids</subject><subject>Thylakoids - metabolism</subject><subject>Vaucheria litorea</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1vEzEQhleIiobCjSNCPiBOSbC9dnYtcYmiUJAa6KGcLcc723Vx7K1nF5H_xQ_EJVE_TpzsmXnmnVeaKYo3jM4Zo-Jj388ZF3M2L0v2rJgwWfIZl6J-XkwozX9a1-q0eIl4QyllJRMvilNGVc2FqCbFn030fkQ7W_pr48mq8zHF3hscyDo0Efe7rYvocE4uuzjkOAwd5HhKrrq9Nz-ja8hligO4QDbGhQGCCRamxITmido5BCDr330CRBcDWcUwuDACaWPKnWFPNjnTIclCeQRZbhGyEIntIfxn79toPYz4qjhpjUd4fXzPih-f11erL7OL7-dfV8uLmZULNsxsU1lpmxYEmEYqBqptpbK2AWspMLqwlQAAxSw3ZWN4LaHhW6NKMJIpZcuz4tNBtx-3O2gshCEZr_vkdibtdTROP60E1-nr-EvnYaLK7R-O7SnejoCD3jm04L0JEEfUFeeylEL8F2TVolaqkhmcHkCbImKC9t4Lo_ruGnTf63wNmul8DRl_99j_I_iw_gy8PwIGrfFtyrtz-MBJJpS68_f2gN3gENN9WfAqF3n5F8LJzUY</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Brian J. Green</creator><creator>Wei-Ye Li</creator><creator>Manhart, James R.</creator><creator>Theodore C. Fox</creator><creator>Summer, Elizabeth J.</creator><creator>Kennedy, Robert A.</creator><creator>Pierce, Sidney K.</creator><creator>Rumpho, Mary E.</creator><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000901</creationdate><title>Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus</title><author>Brian J. Green ; Wei-Ye Li ; Manhart, James R. ; Theodore C. Fox ; Summer, Elizabeth J. ; Kennedy, Robert A. ; Pierce, Sidney K. ; Rumpho, Mary E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-cd7c5cdfe4ead591e9ff59ccdecc0e106c74eee91c2a3da285ed2ba93ea5199c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algae</topic><topic>Algal Proteins - biosynthesis</topic><topic>Algal Proteins - metabolism</topic><topic>Animals</topic><topic>Biochemistry. Physiology. Immunology</topic><topic>Biological and medical sciences</topic><topic>Blotting, Southern</topic><topic>Cell Biology and Signal Transduction</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Chloroplasts</topic><topic>Chloroplasts - genetics</topic><topic>Chloroplasts - metabolism</topic><topic>DNA, Plant - analysis</topic><topic>Electron Transport</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Elysia chlorotica</topic><topic>Eukaryota - genetics</topic><topic>Eukaryota - growth & development</topic><topic>Eukaryota - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genomes</topic><topic>Immunoblotting</topic><topic>Invertebrates</topic><topic>Marine</topic><topic>Metabolism</topic><topic>Mollusca</topic><topic>Mollusca - genetics</topic><topic>Mollusca - growth & development</topic><topic>Mollusca - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>Photosynthetic Reaction Center Complex Proteins - metabolism</topic><topic>Physiology. Development</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plastids</topic><topic>Seas</topic><topic>Slugs</topic><topic>Symbiosis</topic><topic>Thylakoids</topic><topic>Thylakoids - metabolism</topic><topic>Vaucheria litorea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brian J. Green</creatorcontrib><creatorcontrib>Wei-Ye Li</creatorcontrib><creatorcontrib>Manhart, James R.</creatorcontrib><creatorcontrib>Theodore C. Fox</creatorcontrib><creatorcontrib>Summer, Elizabeth J.</creatorcontrib><creatorcontrib>Kennedy, Robert A.</creatorcontrib><creatorcontrib>Pierce, Sidney K.</creatorcontrib><creatorcontrib>Rumpho, Mary E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brian J. Green</au><au>Wei-Ye Li</au><au>Manhart, James R.</au><au>Theodore C. Fox</au><au>Summer, Elizabeth J.</au><au>Kennedy, Robert A.</au><au>Pierce, Sidney K.</au><au>Rumpho, Mary E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2000-09-01</date><risdate>2000</risdate><volume>124</volume><issue>1</issue><spage>331</spage><epage>342</epage><pages>331-342</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplast maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>10982447</pmid><doi>10.1104/pp.124.1.331</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2000-09, Vol.124 (1), p.331-342 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59147 |
source | MEDLINE; JSTOR Complete Journals; EZB Electronic Journals Library; Oxford Journals |
subjects | Algae Algal Proteins - biosynthesis Algal Proteins - metabolism Animals Biochemistry. Physiology. Immunology Biological and medical sciences Blotting, Southern Cell Biology and Signal Transduction Cell Nucleus - genetics Cell Nucleus - metabolism Chloroplasts Chloroplasts - genetics Chloroplasts - metabolism DNA, Plant - analysis Electron Transport Electrophoresis, Polyacrylamide Gel Elysia chlorotica Eukaryota - genetics Eukaryota - growth & development Eukaryota - metabolism Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Plant Genomes Immunoblotting Invertebrates Marine Metabolism Mollusca Mollusca - genetics Mollusca - growth & development Mollusca - metabolism Photosynthesis Photosynthesis, respiration. Anabolism, catabolism Photosynthetic Reaction Center Complex Proteins - metabolism Physiology. Development Plant physiology and development Plants Plastids Seas Slugs Symbiosis Thylakoids Thylakoids - metabolism Vaucheria litorea |
title | Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mollusc-Algal%20Chloroplast%20Endosymbiosis.%20Photosynthesis,%20Thylakoid%20Protein%20Maintenance,%20and%20Chloroplast%20Gene%20Expression%20Continue%20for%20Many%20Months%20in%20the%20Absence%20of%20the%20Algal%20Nucleus&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Brian%20J.%20Green&rft.date=2000-09-01&rft.volume=124&rft.issue=1&rft.spage=331&rft.epage=342&rft.pages=331-342&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.124.1.331&rft_dat=%3Cjstor_pubme%3E4279432%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17689975&rft_id=info:pmid/10982447&rft_jstor_id=4279432&rfr_iscdi=true |