GCN5L1/BLOS1 Links Acetylation, Organelle Remodeling, and Metabolism
General control of amino acid synthesis 5 (GCN5) like-1 (GCN5L1) was identified as a novel gene with sequence homology to the histone acetyltransferase Gcn5. Subsequent protein-interaction studies identified GCN5L1 as a subunit of the multiprotein lysosome biogenesis complex, resulting in an alterna...
Gespeichert in:
Veröffentlicht in: | Trends in cell biology 2018-05, Vol.28 (5), p.346-355 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 5 |
container_start_page | 346 |
container_title | Trends in cell biology |
container_volume | 28 |
creator | Scott, Iain Wang, Lingdi Wu, Kaiyuan Thapa, Dharendra Sack, Michael N. |
description | General control of amino acid synthesis 5 (GCN5) like-1 (GCN5L1) was identified as a novel gene with sequence homology to the histone acetyltransferase Gcn5. Subsequent protein-interaction studies identified GCN5L1 as a subunit of the multiprotein lysosome biogenesis complex, resulting in an alternative designation as biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1 or BLOC1S1). Despite the distinct nomenclatures, GCN5L1/BLOS1 has been shown to play crucial roles in mitochondria, endosomes, lysosomes, and synaptic vesicle precursors (SVPs). GCN5L1/BLOS1 controls mitochondrial protein acetylation, modulates metabolic pathways, and orchestrates retrograde mitochondria-to-nucleus signaling. It also contributes to endosome–lysosome and vesicle trafficking and to endolysosomal function. Here we discuss the intracellular roles of GCN5L1/BLOS1 in the hope of linking mitochondria-centric effects to cytosolic vesicle biology.
GCN5L1, BLOS1, and BLOC1S1 are alternative names of the same gene product implicated in several distinct mitochondrial and cytosolic pathways.
This protein was initially designated GCN5L1 due to its sequence homology to the nuclear acetyltransferase GCN5.
GCN5L1 does not contain an acetyltransferase catalytic domain but may promote protein acetylation in the presence of acetyl-CoA generation pathways or contribute to acetylation as an acetyl-CoA-binding protein.
The depletion of GCN5L1 has dose-dependent effects in modulating protein acetylation and retrograde signaling with profound effects on mitochondrial turnover and biogenesis.
The first functional target of GCN5L1 has been identified as the mitochondria-associated kinesin Kif1Bα-binding protein (KBP).
BLOS1/BLOC1S1 deficiency disrupts endosome–lysosome and synaptic vesicle precursor trafficking.
BLOS1/BLOC1S1 disrupts endolysosome and lysosome functioning. |
doi_str_mv | 10.1016/j.tcb.2018.01.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5912981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0962892418300163</els_id><sourcerecordid>2008366955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-7cba9c9d6e0941c1850f11e39e8e95c8d4b6cc7ce0bb2e88c0e952c16d3ad82b3</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoModq3-AG9kwBsvOtOczEcSBKGuthZGF_y4Dpnk7Jp1JqnJbKH_3izbFu2FV4HkOS95z0PIS6AVUOhOt9VshopREBWFilL-iCxAcFnWVIjHZEFlx0ohWXNEnqW0pZlgUD8lR0w2nHfQLsiHi-WXtofT9_3qGxS9879ScWZwvhn17II_KVZxoz2OIxZfcQoWR-c3J4X2tviMsx7C6NL0nDxZ6zHhi9vzmPw4__h9-ansVxeXy7O-NA2Xc8nNoKWRtkMqGzAgWroGwFqiQNkaYZuhM4YbpMPAUAhD8zUz0NlaW8GG-pi8O-Re7YYJrUE_Rz2qq-gmHW9U0E79--LdT7UJ16qVwKSAHPDmNiCG3ztMs5pcMrldrhh2STFKRd11sm0z-voBug276HO9THWCMt7wfSAcKBNDShHX958BqvaO1FZlR2rvSFFQ2UCeefV3i_uJOykZeHsAMO_y2mFUyTj0Bq2LaGZlg_tP_B_DsKDP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068027471</pqid></control><display><type>article</type><title>GCN5L1/BLOS1 Links Acetylation, Organelle Remodeling, and Metabolism</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Scott, Iain ; Wang, Lingdi ; Wu, Kaiyuan ; Thapa, Dharendra ; Sack, Michael N.</creator><creatorcontrib>Scott, Iain ; Wang, Lingdi ; Wu, Kaiyuan ; Thapa, Dharendra ; Sack, Michael N.</creatorcontrib><description>General control of amino acid synthesis 5 (GCN5) like-1 (GCN5L1) was identified as a novel gene with sequence homology to the histone acetyltransferase Gcn5. Subsequent protein-interaction studies identified GCN5L1 as a subunit of the multiprotein lysosome biogenesis complex, resulting in an alternative designation as biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1 or BLOC1S1). Despite the distinct nomenclatures, GCN5L1/BLOS1 has been shown to play crucial roles in mitochondria, endosomes, lysosomes, and synaptic vesicle precursors (SVPs). GCN5L1/BLOS1 controls mitochondrial protein acetylation, modulates metabolic pathways, and orchestrates retrograde mitochondria-to-nucleus signaling. It also contributes to endosome–lysosome and vesicle trafficking and to endolysosomal function. Here we discuss the intracellular roles of GCN5L1/BLOS1 in the hope of linking mitochondria-centric effects to cytosolic vesicle biology.
GCN5L1, BLOS1, and BLOC1S1 are alternative names of the same gene product implicated in several distinct mitochondrial and cytosolic pathways.
This protein was initially designated GCN5L1 due to its sequence homology to the nuclear acetyltransferase GCN5.
GCN5L1 does not contain an acetyltransferase catalytic domain but may promote protein acetylation in the presence of acetyl-CoA generation pathways or contribute to acetylation as an acetyl-CoA-binding protein.
The depletion of GCN5L1 has dose-dependent effects in modulating protein acetylation and retrograde signaling with profound effects on mitochondrial turnover and biogenesis.
The first functional target of GCN5L1 has been identified as the mitochondria-associated kinesin Kif1Bα-binding protein (KBP).
BLOS1/BLOC1S1 deficiency disrupts endosome–lysosome and synaptic vesicle precursor trafficking.
BLOS1/BLOC1S1 disrupts endolysosome and lysosome functioning.</description><identifier>ISSN: 0962-8924</identifier><identifier>ISSN: 1879-3088</identifier><identifier>EISSN: 1879-3088</identifier><identifier>DOI: 10.1016/j.tcb.2018.01.007</identifier><identifier>PMID: 29477615</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acetylation ; Amino acids ; BORC complex ; Cytosol - metabolism ; endosomal function ; Endosomes ; Endosomes - genetics ; Endosomes - metabolism ; Genes ; Genetic research ; Genetics ; Histone acetyltransferase ; Homology ; Humans ; lysosome trafficking ; Lysosomes ; Lysosomes - genetics ; Lysosomes - metabolism ; Metabolism ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Nerve Tissue Proteins - chemistry ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Organelle Biogenesis ; Protein Transport - genetics ; Proteins ; retrograde signaling ; Signal Transduction ; Synaptic Vesicles - genetics ; Synaptic Vesicles - metabolism</subject><ispartof>Trends in cell biology, 2018-05, Vol.28 (5), p.346-355</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV May 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-7cba9c9d6e0941c1850f11e39e8e95c8d4b6cc7ce0bb2e88c0e952c16d3ad82b3</citedby><cites>FETCH-LOGICAL-c479t-7cba9c9d6e0941c1850f11e39e8e95c8d4b6cc7ce0bb2e88c0e952c16d3ad82b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcb.2018.01.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29477615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scott, Iain</creatorcontrib><creatorcontrib>Wang, Lingdi</creatorcontrib><creatorcontrib>Wu, Kaiyuan</creatorcontrib><creatorcontrib>Thapa, Dharendra</creatorcontrib><creatorcontrib>Sack, Michael N.</creatorcontrib><title>GCN5L1/BLOS1 Links Acetylation, Organelle Remodeling, and Metabolism</title><title>Trends in cell biology</title><addtitle>Trends Cell Biol</addtitle><description>General control of amino acid synthesis 5 (GCN5) like-1 (GCN5L1) was identified as a novel gene with sequence homology to the histone acetyltransferase Gcn5. Subsequent protein-interaction studies identified GCN5L1 as a subunit of the multiprotein lysosome biogenesis complex, resulting in an alternative designation as biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1 or BLOC1S1). Despite the distinct nomenclatures, GCN5L1/BLOS1 has been shown to play crucial roles in mitochondria, endosomes, lysosomes, and synaptic vesicle precursors (SVPs). GCN5L1/BLOS1 controls mitochondrial protein acetylation, modulates metabolic pathways, and orchestrates retrograde mitochondria-to-nucleus signaling. It also contributes to endosome–lysosome and vesicle trafficking and to endolysosomal function. Here we discuss the intracellular roles of GCN5L1/BLOS1 in the hope of linking mitochondria-centric effects to cytosolic vesicle biology.
GCN5L1, BLOS1, and BLOC1S1 are alternative names of the same gene product implicated in several distinct mitochondrial and cytosolic pathways.
This protein was initially designated GCN5L1 due to its sequence homology to the nuclear acetyltransferase GCN5.
GCN5L1 does not contain an acetyltransferase catalytic domain but may promote protein acetylation in the presence of acetyl-CoA generation pathways or contribute to acetylation as an acetyl-CoA-binding protein.
The depletion of GCN5L1 has dose-dependent effects in modulating protein acetylation and retrograde signaling with profound effects on mitochondrial turnover and biogenesis.
The first functional target of GCN5L1 has been identified as the mitochondria-associated kinesin Kif1Bα-binding protein (KBP).
BLOS1/BLOC1S1 deficiency disrupts endosome–lysosome and synaptic vesicle precursor trafficking.
BLOS1/BLOC1S1 disrupts endolysosome and lysosome functioning.</description><subject>Acetylation</subject><subject>Amino acids</subject><subject>BORC complex</subject><subject>Cytosol - metabolism</subject><subject>endosomal function</subject><subject>Endosomes</subject><subject>Endosomes - genetics</subject><subject>Endosomes - metabolism</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Histone acetyltransferase</subject><subject>Homology</subject><subject>Humans</subject><subject>lysosome trafficking</subject><subject>Lysosomes</subject><subject>Lysosomes - genetics</subject><subject>Lysosomes - metabolism</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Organelle Biogenesis</subject><subject>Protein Transport - genetics</subject><subject>Proteins</subject><subject>retrograde signaling</subject><subject>Signal Transduction</subject><subject>Synaptic Vesicles - genetics</subject><subject>Synaptic Vesicles - metabolism</subject><issn>0962-8924</issn><issn>1879-3088</issn><issn>1879-3088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV1rFDEUhoModq3-AG9kwBsvOtOczEcSBKGuthZGF_y4Dpnk7Jp1JqnJbKH_3izbFu2FV4HkOS95z0PIS6AVUOhOt9VshopREBWFilL-iCxAcFnWVIjHZEFlx0ohWXNEnqW0pZlgUD8lR0w2nHfQLsiHi-WXtofT9_3qGxS9879ScWZwvhn17II_KVZxoz2OIxZfcQoWR-c3J4X2tviMsx7C6NL0nDxZ6zHhi9vzmPw4__h9-ansVxeXy7O-NA2Xc8nNoKWRtkMqGzAgWroGwFqiQNkaYZuhM4YbpMPAUAhD8zUz0NlaW8GG-pi8O-Re7YYJrUE_Rz2qq-gmHW9U0E79--LdT7UJ16qVwKSAHPDmNiCG3ztMs5pcMrldrhh2STFKRd11sm0z-voBug276HO9THWCMt7wfSAcKBNDShHX958BqvaO1FZlR2rvSFFQ2UCeefV3i_uJOykZeHsAMO_y2mFUyTj0Bq2LaGZlg_tP_B_DsKDP</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Scott, Iain</creator><creator>Wang, Lingdi</creator><creator>Wu, Kaiyuan</creator><creator>Thapa, Dharendra</creator><creator>Sack, Michael N.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180501</creationdate><title>GCN5L1/BLOS1 Links Acetylation, Organelle Remodeling, and Metabolism</title><author>Scott, Iain ; Wang, Lingdi ; Wu, Kaiyuan ; Thapa, Dharendra ; Sack, Michael N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-7cba9c9d6e0941c1850f11e39e8e95c8d4b6cc7ce0bb2e88c0e952c16d3ad82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylation</topic><topic>Amino acids</topic><topic>BORC complex</topic><topic>Cytosol - metabolism</topic><topic>endosomal function</topic><topic>Endosomes</topic><topic>Endosomes - genetics</topic><topic>Endosomes - metabolism</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Histone acetyltransferase</topic><topic>Homology</topic><topic>Humans</topic><topic>lysosome trafficking</topic><topic>Lysosomes</topic><topic>Lysosomes - genetics</topic><topic>Lysosomes - metabolism</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Organelle Biogenesis</topic><topic>Protein Transport - genetics</topic><topic>Proteins</topic><topic>retrograde signaling</topic><topic>Signal Transduction</topic><topic>Synaptic Vesicles - genetics</topic><topic>Synaptic Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Iain</creatorcontrib><creatorcontrib>Wang, Lingdi</creatorcontrib><creatorcontrib>Wu, Kaiyuan</creatorcontrib><creatorcontrib>Thapa, Dharendra</creatorcontrib><creatorcontrib>Sack, Michael N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Iain</au><au>Wang, Lingdi</au><au>Wu, Kaiyuan</au><au>Thapa, Dharendra</au><au>Sack, Michael N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GCN5L1/BLOS1 Links Acetylation, Organelle Remodeling, and Metabolism</atitle><jtitle>Trends in cell biology</jtitle><addtitle>Trends Cell Biol</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>28</volume><issue>5</issue><spage>346</spage><epage>355</epage><pages>346-355</pages><issn>0962-8924</issn><issn>1879-3088</issn><eissn>1879-3088</eissn><abstract>General control of amino acid synthesis 5 (GCN5) like-1 (GCN5L1) was identified as a novel gene with sequence homology to the histone acetyltransferase Gcn5. Subsequent protein-interaction studies identified GCN5L1 as a subunit of the multiprotein lysosome biogenesis complex, resulting in an alternative designation as biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1 or BLOC1S1). Despite the distinct nomenclatures, GCN5L1/BLOS1 has been shown to play crucial roles in mitochondria, endosomes, lysosomes, and synaptic vesicle precursors (SVPs). GCN5L1/BLOS1 controls mitochondrial protein acetylation, modulates metabolic pathways, and orchestrates retrograde mitochondria-to-nucleus signaling. It also contributes to endosome–lysosome and vesicle trafficking and to endolysosomal function. Here we discuss the intracellular roles of GCN5L1/BLOS1 in the hope of linking mitochondria-centric effects to cytosolic vesicle biology.
GCN5L1, BLOS1, and BLOC1S1 are alternative names of the same gene product implicated in several distinct mitochondrial and cytosolic pathways.
This protein was initially designated GCN5L1 due to its sequence homology to the nuclear acetyltransferase GCN5.
GCN5L1 does not contain an acetyltransferase catalytic domain but may promote protein acetylation in the presence of acetyl-CoA generation pathways or contribute to acetylation as an acetyl-CoA-binding protein.
The depletion of GCN5L1 has dose-dependent effects in modulating protein acetylation and retrograde signaling with profound effects on mitochondrial turnover and biogenesis.
The first functional target of GCN5L1 has been identified as the mitochondria-associated kinesin Kif1Bα-binding protein (KBP).
BLOS1/BLOC1S1 deficiency disrupts endosome–lysosome and synaptic vesicle precursor trafficking.
BLOS1/BLOC1S1 disrupts endolysosome and lysosome functioning.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29477615</pmid><doi>10.1016/j.tcb.2018.01.007</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8924 |
ispartof | Trends in cell biology, 2018-05, Vol.28 (5), p.346-355 |
issn | 0962-8924 1879-3088 1879-3088 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5912981 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Acetylation Amino acids BORC complex Cytosol - metabolism endosomal function Endosomes Endosomes - genetics Endosomes - metabolism Genes Genetic research Genetics Histone acetyltransferase Homology Humans lysosome trafficking Lysosomes Lysosomes - genetics Lysosomes - metabolism Metabolism Mitochondria Mitochondria - genetics Mitochondria - metabolism Nerve Tissue Proteins - chemistry Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Organelle Biogenesis Protein Transport - genetics Proteins retrograde signaling Signal Transduction Synaptic Vesicles - genetics Synaptic Vesicles - metabolism |
title | GCN5L1/BLOS1 Links Acetylation, Organelle Remodeling, and Metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GCN5L1/BLOS1%20Links%20Acetylation,%20Organelle%20Remodeling,%20and%20Metabolism&rft.jtitle=Trends%20in%20cell%20biology&rft.au=Scott,%20Iain&rft.date=2018-05-01&rft.volume=28&rft.issue=5&rft.spage=346&rft.epage=355&rft.pages=346-355&rft.issn=0962-8924&rft.eissn=1879-3088&rft_id=info:doi/10.1016/j.tcb.2018.01.007&rft_dat=%3Cproquest_pubme%3E2008366955%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068027471&rft_id=info:pmid/29477615&rft_els_id=S0962892418300163&rfr_iscdi=true |