Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions

Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a “large sampleo” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrometeorology 2016-03, Vol.17 (3), p.745-759
Hauptverfasser: Nearing, Grey S., Mocko, David M., Peters-Lidard, Christa D., Kumar, Sujay V., Xia, Youlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 759
container_issue 3
container_start_page 745
container_title Journal of hydrometeorology
container_volume 17
creator Nearing, Grey S.
Mocko, David M.
Peters-Lidard, Christa D.
Kumar, Sujay V.
Xia, Youlong
description Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a “large sampleo” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.
doi_str_mv 10.1175/JHM-D-15-0063.1
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5911932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24915598</jstor_id><sourcerecordid>24915598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-8f66a2b9d08dcbf25dbc0bd5e9025795d244cf9e0d0c5e4a1fce284581065093</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoh9w5gSKxKWXtB7H48QXpLJbKGgLhy0SN8txnNbLrp3aTqX-e7zasnxcONnWPB69M09RvAJyCtDg2efLq2peAVaE8PoUnhSHgBSrBhk83d_x-0FxFOOKEMIEtM-LAyq4aBrCDwv53jh9u1Hhh3U35ZfF_HxZ0XLp7bq88jamKZhSub68uFejT0G5ONqgkvWuTL5cmlHllym_OW1CUtalh3LmXQq2m7ZQfFE8G9Q6mpeP53Fx_eHienZZLb5-_DQ7X1SaNTxV7cC5op3oSdvrbqDYd5p0PRpBKDYCe8qYHoQhPdFomIJBG9oybIFwJKI-Lt7t2o5TtzG9NjmCWssx2Dzag_TKyr8rzt7KG38vUQCImuYGJ48Ngr-bTExyY6M267Vyxk9RUlIDA-Sc_ReFRhCRw9WY0bf_oCs_BZcXIUFQ3mZrrM7U2Y7SwccYzLDPDURuNcusWc4loNxqlpB_vPlz3D3_y2sGXu-AVUw-_K5n_4iirX8CCq-t0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926800643</pqid></control><display><type>article</type><title>Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nearing, Grey S. ; Mocko, David M. ; Peters-Lidard, Christa D. ; Kumar, Sujay V. ; Xia, Youlong</creator><creatorcontrib>Nearing, Grey S. ; Mocko, David M. ; Peters-Lidard, Christa D. ; Kumar, Sujay V. ; Xia, Youlong</creatorcontrib><description>Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a “large sampleo” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-15-0063.1</identifier><identifier>PMID: 29697706</identifier><language>eng</language><publisher>United States: American Meteorological Society</publisher><subject>Benchmarks ; Boundary conditions ; Business metrics ; Data ; Data assimilation ; Data collection ; Data processing ; Dynamical systems ; Energy balance ; Estimates ; Evapotranspiration ; Evapotranspiration estimates ; Hydrology ; Laboratories ; Land surface models ; Lookup tables ; Mathematical models ; Methods ; Parameter estimation ; Parameter uncertainty ; Parameters ; Science ; Soil ; Soil moisture ; Soils ; Tables ; Theory ; Uncertainty</subject><ispartof>Journal of hydrometeorology, 2016-03, Vol.17 (3), p.745-759</ispartof><rights>2016 American Meteorological Society</rights><rights>Copyright American Meteorological Society Mar 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-8f66a2b9d08dcbf25dbc0bd5e9025795d244cf9e0d0c5e4a1fce284581065093</citedby><cites>FETCH-LOGICAL-c476t-8f66a2b9d08dcbf25dbc0bd5e9025795d244cf9e0d0c5e4a1fce284581065093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24915598$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24915598$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29697706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nearing, Grey S.</creatorcontrib><creatorcontrib>Mocko, David M.</creatorcontrib><creatorcontrib>Peters-Lidard, Christa D.</creatorcontrib><creatorcontrib>Kumar, Sujay V.</creatorcontrib><creatorcontrib>Xia, Youlong</creatorcontrib><title>Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions</title><title>Journal of hydrometeorology</title><addtitle>J Hydrometeorol</addtitle><description>Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a “large sampleo” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.</description><subject>Benchmarks</subject><subject>Boundary conditions</subject><subject>Business metrics</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Data processing</subject><subject>Dynamical systems</subject><subject>Energy balance</subject><subject>Estimates</subject><subject>Evapotranspiration</subject><subject>Evapotranspiration estimates</subject><subject>Hydrology</subject><subject>Laboratories</subject><subject>Land surface models</subject><subject>Lookup tables</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Parameters</subject><subject>Science</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Tables</subject><subject>Theory</subject><subject>Uncertainty</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU1v1DAQhiMEoh9w5gSKxKWXtB7H48QXpLJbKGgLhy0SN8txnNbLrp3aTqX-e7zasnxcONnWPB69M09RvAJyCtDg2efLq2peAVaE8PoUnhSHgBSrBhk83d_x-0FxFOOKEMIEtM-LAyq4aBrCDwv53jh9u1Hhh3U35ZfF_HxZ0XLp7bq88jamKZhSub68uFejT0G5ONqgkvWuTL5cmlHllym_OW1CUtalh3LmXQq2m7ZQfFE8G9Q6mpeP53Fx_eHienZZLb5-_DQ7X1SaNTxV7cC5op3oSdvrbqDYd5p0PRpBKDYCe8qYHoQhPdFomIJBG9oybIFwJKI-Lt7t2o5TtzG9NjmCWssx2Dzag_TKyr8rzt7KG38vUQCImuYGJ48Ngr-bTExyY6M267Vyxk9RUlIDA-Sc_ReFRhCRw9WY0bf_oCs_BZcXIUFQ3mZrrM7U2Y7SwccYzLDPDURuNcusWc4loNxqlpB_vPlz3D3_y2sGXu-AVUw-_K5n_4iirX8CCq-t0Q</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Nearing, Grey S.</creator><creator>Mocko, David M.</creator><creator>Peters-Lidard, Christa D.</creator><creator>Kumar, Sujay V.</creator><creator>Xia, Youlong</creator><general>American Meteorological Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160301</creationdate><title>Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions</title><author>Nearing, Grey S. ; Mocko, David M. ; Peters-Lidard, Christa D. ; Kumar, Sujay V. ; Xia, Youlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-8f66a2b9d08dcbf25dbc0bd5e9025795d244cf9e0d0c5e4a1fce284581065093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Benchmarks</topic><topic>Boundary conditions</topic><topic>Business metrics</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Data processing</topic><topic>Dynamical systems</topic><topic>Energy balance</topic><topic>Estimates</topic><topic>Evapotranspiration</topic><topic>Evapotranspiration estimates</topic><topic>Hydrology</topic><topic>Laboratories</topic><topic>Land surface models</topic><topic>Lookup tables</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Parameters</topic><topic>Science</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Tables</topic><topic>Theory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nearing, Grey S.</creatorcontrib><creatorcontrib>Mocko, David M.</creatorcontrib><creatorcontrib>Peters-Lidard, Christa D.</creatorcontrib><creatorcontrib>Kumar, Sujay V.</creatorcontrib><creatorcontrib>Xia, Youlong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nearing, Grey S.</au><au>Mocko, David M.</au><au>Peters-Lidard, Christa D.</au><au>Kumar, Sujay V.</au><au>Xia, Youlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions</atitle><jtitle>Journal of hydrometeorology</jtitle><addtitle>J Hydrometeorol</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>17</volume><issue>3</issue><spage>745</spage><epage>759</epage><pages>745-759</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a “large sampleo” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.</abstract><cop>United States</cop><pub>American Meteorological Society</pub><pmid>29697706</pmid><doi>10.1175/JHM-D-15-0063.1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-755X
ispartof Journal of hydrometeorology, 2016-03, Vol.17 (3), p.745-759
issn 1525-755X
1525-7541
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5911932
source Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Benchmarks
Boundary conditions
Business metrics
Data
Data assimilation
Data collection
Data processing
Dynamical systems
Energy balance
Estimates
Evapotranspiration
Evapotranspiration estimates
Hydrology
Laboratories
Land surface models
Lookup tables
Mathematical models
Methods
Parameter estimation
Parameter uncertainty
Parameters
Science
Soil
Soil moisture
Soils
Tables
Theory
Uncertainty
title Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20NLDAS-2%20Soil%20Moisture%20and%20Evapotranspiration%20to%20Separate%20Uncertainty%20Contributions&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Nearing,%20Grey%20S.&rft.date=2016-03-01&rft.volume=17&rft.issue=3&rft.spage=745&rft.epage=759&rft.pages=745-759&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-15-0063.1&rft_dat=%3Cjstor_pubme%3E24915598%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926800643&rft_id=info:pmid/29697706&rft_jstor_id=24915598&rfr_iscdi=true