Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions
Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a “large sampleo” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) for...
Gespeichert in:
Veröffentlicht in: | Journal of hydrometeorology 2016-03, Vol.17 (3), p.745-759 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 759 |
---|---|
container_issue | 3 |
container_start_page | 745 |
container_title | Journal of hydrometeorology |
container_volume | 17 |
creator | Nearing, Grey S. Mocko, David M. Peters-Lidard, Christa D. Kumar, Sujay V. Xia, Youlong |
description | Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a “large sampleo” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances. |
doi_str_mv | 10.1175/JHM-D-15-0063.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5911932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24915598</jstor_id><sourcerecordid>24915598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-8f66a2b9d08dcbf25dbc0bd5e9025795d244cf9e0d0c5e4a1fce284581065093</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoh9w5gSKxKWXtB7H48QXpLJbKGgLhy0SN8txnNbLrp3aTqX-e7zasnxcONnWPB69M09RvAJyCtDg2efLq2peAVaE8PoUnhSHgBSrBhk83d_x-0FxFOOKEMIEtM-LAyq4aBrCDwv53jh9u1Hhh3U35ZfF_HxZ0XLp7bq88jamKZhSub68uFejT0G5ONqgkvWuTL5cmlHllym_OW1CUtalh3LmXQq2m7ZQfFE8G9Q6mpeP53Fx_eHienZZLb5-_DQ7X1SaNTxV7cC5op3oSdvrbqDYd5p0PRpBKDYCe8qYHoQhPdFomIJBG9oybIFwJKI-Lt7t2o5TtzG9NjmCWssx2Dzag_TKyr8rzt7KG38vUQCImuYGJ48Ngr-bTExyY6M267Vyxk9RUlIDA-Sc_ReFRhCRw9WY0bf_oCs_BZcXIUFQ3mZrrM7U2Y7SwccYzLDPDURuNcusWc4loNxqlpB_vPlz3D3_y2sGXu-AVUw-_K5n_4iirX8CCq-t0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926800643</pqid></control><display><type>article</type><title>Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nearing, Grey S. ; Mocko, David M. ; Peters-Lidard, Christa D. ; Kumar, Sujay V. ; Xia, Youlong</creator><creatorcontrib>Nearing, Grey S. ; Mocko, David M. ; Peters-Lidard, Christa D. ; Kumar, Sujay V. ; Xia, Youlong</creatorcontrib><description>Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a “large sampleo” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-15-0063.1</identifier><identifier>PMID: 29697706</identifier><language>eng</language><publisher>United States: American Meteorological Society</publisher><subject>Benchmarks ; Boundary conditions ; Business metrics ; Data ; Data assimilation ; Data collection ; Data processing ; Dynamical systems ; Energy balance ; Estimates ; Evapotranspiration ; Evapotranspiration estimates ; Hydrology ; Laboratories ; Land surface models ; Lookup tables ; Mathematical models ; Methods ; Parameter estimation ; Parameter uncertainty ; Parameters ; Science ; Soil ; Soil moisture ; Soils ; Tables ; Theory ; Uncertainty</subject><ispartof>Journal of hydrometeorology, 2016-03, Vol.17 (3), p.745-759</ispartof><rights>2016 American Meteorological Society</rights><rights>Copyright American Meteorological Society Mar 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-8f66a2b9d08dcbf25dbc0bd5e9025795d244cf9e0d0c5e4a1fce284581065093</citedby><cites>FETCH-LOGICAL-c476t-8f66a2b9d08dcbf25dbc0bd5e9025795d244cf9e0d0c5e4a1fce284581065093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24915598$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24915598$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29697706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nearing, Grey S.</creatorcontrib><creatorcontrib>Mocko, David M.</creatorcontrib><creatorcontrib>Peters-Lidard, Christa D.</creatorcontrib><creatorcontrib>Kumar, Sujay V.</creatorcontrib><creatorcontrib>Xia, Youlong</creatorcontrib><title>Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions</title><title>Journal of hydrometeorology</title><addtitle>J Hydrometeorol</addtitle><description>Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a “large sampleo” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.</description><subject>Benchmarks</subject><subject>Boundary conditions</subject><subject>Business metrics</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Data processing</subject><subject>Dynamical systems</subject><subject>Energy balance</subject><subject>Estimates</subject><subject>Evapotranspiration</subject><subject>Evapotranspiration estimates</subject><subject>Hydrology</subject><subject>Laboratories</subject><subject>Land surface models</subject><subject>Lookup tables</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Parameters</subject><subject>Science</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Tables</subject><subject>Theory</subject><subject>Uncertainty</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU1v1DAQhiMEoh9w5gSKxKWXtB7H48QXpLJbKGgLhy0SN8txnNbLrp3aTqX-e7zasnxcONnWPB69M09RvAJyCtDg2efLq2peAVaE8PoUnhSHgBSrBhk83d_x-0FxFOOKEMIEtM-LAyq4aBrCDwv53jh9u1Hhh3U35ZfF_HxZ0XLp7bq88jamKZhSub68uFejT0G5ONqgkvWuTL5cmlHllym_OW1CUtalh3LmXQq2m7ZQfFE8G9Q6mpeP53Fx_eHienZZLb5-_DQ7X1SaNTxV7cC5op3oSdvrbqDYd5p0PRpBKDYCe8qYHoQhPdFomIJBG9oybIFwJKI-Lt7t2o5TtzG9NjmCWssx2Dzag_TKyr8rzt7KG38vUQCImuYGJ48Ngr-bTExyY6M267Vyxk9RUlIDA-Sc_ReFRhCRw9WY0bf_oCs_BZcXIUFQ3mZrrM7U2Y7SwccYzLDPDURuNcusWc4loNxqlpB_vPlz3D3_y2sGXu-AVUw-_K5n_4iirX8CCq-t0Q</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Nearing, Grey S.</creator><creator>Mocko, David M.</creator><creator>Peters-Lidard, Christa D.</creator><creator>Kumar, Sujay V.</creator><creator>Xia, Youlong</creator><general>American Meteorological Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160301</creationdate><title>Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions</title><author>Nearing, Grey S. ; Mocko, David M. ; Peters-Lidard, Christa D. ; Kumar, Sujay V. ; Xia, Youlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-8f66a2b9d08dcbf25dbc0bd5e9025795d244cf9e0d0c5e4a1fce284581065093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Benchmarks</topic><topic>Boundary conditions</topic><topic>Business metrics</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Data processing</topic><topic>Dynamical systems</topic><topic>Energy balance</topic><topic>Estimates</topic><topic>Evapotranspiration</topic><topic>Evapotranspiration estimates</topic><topic>Hydrology</topic><topic>Laboratories</topic><topic>Land surface models</topic><topic>Lookup tables</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Parameters</topic><topic>Science</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Tables</topic><topic>Theory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nearing, Grey S.</creatorcontrib><creatorcontrib>Mocko, David M.</creatorcontrib><creatorcontrib>Peters-Lidard, Christa D.</creatorcontrib><creatorcontrib>Kumar, Sujay V.</creatorcontrib><creatorcontrib>Xia, Youlong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nearing, Grey S.</au><au>Mocko, David M.</au><au>Peters-Lidard, Christa D.</au><au>Kumar, Sujay V.</au><au>Xia, Youlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions</atitle><jtitle>Journal of hydrometeorology</jtitle><addtitle>J Hydrometeorol</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>17</volume><issue>3</issue><spage>745</spage><epage>759</epage><pages>745-759</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a “large sampleo” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.</abstract><cop>United States</cop><pub>American Meteorological Society</pub><pmid>29697706</pmid><doi>10.1175/JHM-D-15-0063.1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-755X |
ispartof | Journal of hydrometeorology, 2016-03, Vol.17 (3), p.745-759 |
issn | 1525-755X 1525-7541 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5911932 |
source | Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Benchmarks Boundary conditions Business metrics Data Data assimilation Data collection Data processing Dynamical systems Energy balance Estimates Evapotranspiration Evapotranspiration estimates Hydrology Laboratories Land surface models Lookup tables Mathematical models Methods Parameter estimation Parameter uncertainty Parameters Science Soil Soil moisture Soils Tables Theory Uncertainty |
title | Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20NLDAS-2%20Soil%20Moisture%20and%20Evapotranspiration%20to%20Separate%20Uncertainty%20Contributions&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Nearing,%20Grey%20S.&rft.date=2016-03-01&rft.volume=17&rft.issue=3&rft.spage=745&rft.epage=759&rft.pages=745-759&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-15-0063.1&rft_dat=%3Cjstor_pubme%3E24915598%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926800643&rft_id=info:pmid/29697706&rft_jstor_id=24915598&rfr_iscdi=true |