Polypharmacology-based ceritinib repurposing using integrated functional proteomics

A systems chemical biology approach to characterize beneficial off-target effects revealed a polypharmacology mechanism for the multikinase inhibitor ceritinib and a repurposing opportunity through rational design of a synergistic drug combination. Targeted drugs are effective when they directly inh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2017-12, Vol.13 (12), p.1222-1231
Hauptverfasser: Kuenzi, Brent M, Remsing Rix, Lily L, Stewart, Paul A, Fang, Bin, Kinose, Fumi, Bryant, Annamarie T, Boyle, Theresa A, Koomen, John M, Haura, Eric B, Rix, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1231
container_issue 12
container_start_page 1222
container_title Nature chemical biology
container_volume 13
creator Kuenzi, Brent M
Remsing Rix, Lily L
Stewart, Paul A
Fang, Bin
Kinose, Fumi
Bryant, Annamarie T
Boyle, Theresa A
Koomen, John M
Haura, Eric B
Rix, Uwe
description A systems chemical biology approach to characterize beneficial off-target effects revealed a polypharmacology mechanism for the multikinase inhibitor ceritinib and a repurposing opportunity through rational design of a synergistic drug combination. Targeted drugs are effective when they directly inhibit strong disease drivers, but only a small fraction of diseases feature defined actionable drivers. Alternatively, network-based approaches can uncover new therapeutic opportunities. Applying an integrated phenotypic screening, chemical and phosphoproteomics strategy, here we describe the anaplastic lymphoma kinase (ALK) inhibitor ceritinib as having activity across several ALK -negative lung cancer cell lines and identify new targets and network-wide signaling effects. Combining pharmacological inhibitors and RNA interference revealed a polypharmacology mechanism involving the noncanonical targets IGF1R, FAK1, RSK1 and RSK2. Mutating the downstream signaling hub YB1 protected cells from ceritinib. Consistent with YB1 signaling being known to cause taxol resistance, combination of ceritinib with paclitaxel displayed strong synergy, particularly in cells expressing high FAK autophosphorylation, which we show to be prevalent in lung cancer. Together, we present a systems chemical biology platform for elucidating multikinase inhibitor polypharmacology mechanisms, subsequent design of synergistic drug combinations, and identification of mechanistic biomarker candidates.
doi_str_mv 10.1038/nchembio.2489
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5909815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949084415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-81fa8a67c54fc43f5cac7bda38a3f3b897da310d184dbbf743a42b58772044523</originalsourceid><addsrcrecordid>eNptkc1LAzEQxYMotlaPXqXgxcvWZJN0k4sg4hcUFNRzSLLZbWQ3WZNdof-9qdWi4mVmYH68mccD4BjBGYKYnTu9NK2yfpYTxnfAGFGaZ4TM-e52pnAEDmJ8hRDP54jtg1HOOEc5gWPw9OibVbeUoZXaN75eZUpGU061Cba3zqppMN0QOh-tq6fDZ7WuN3WQfcKqweneeiebaRd8b3xrdTwEe5Vsojn66hPwcnP9fHWXLR5u768uF5kmlPQZQ5Vkcl5oSipNcEW11IUqJWYSV1gxXqQZwRIxUipVFQRLkivKiiKHyVSOJ-Bio9sNqjWlNq4PshFdsK0MK-GlFb83zi5F7d8F5ZAzRJPA2ZdA8G-Dib1obdSmaaQzfogCccIhI-QTPf2DvvohJN9rqkhMjhFPVLahdPAxBlNtn0FQrOMS33GJdVyJP_npYEt_55OA2QaIaeVqE36c_VfxAwwZpVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978442319</pqid></control><display><type>article</type><title>Polypharmacology-based ceritinib repurposing using integrated functional proteomics</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Kuenzi, Brent M ; Remsing Rix, Lily L ; Stewart, Paul A ; Fang, Bin ; Kinose, Fumi ; Bryant, Annamarie T ; Boyle, Theresa A ; Koomen, John M ; Haura, Eric B ; Rix, Uwe</creator><creatorcontrib>Kuenzi, Brent M ; Remsing Rix, Lily L ; Stewart, Paul A ; Fang, Bin ; Kinose, Fumi ; Bryant, Annamarie T ; Boyle, Theresa A ; Koomen, John M ; Haura, Eric B ; Rix, Uwe</creatorcontrib><description>A systems chemical biology approach to characterize beneficial off-target effects revealed a polypharmacology mechanism for the multikinase inhibitor ceritinib and a repurposing opportunity through rational design of a synergistic drug combination. Targeted drugs are effective when they directly inhibit strong disease drivers, but only a small fraction of diseases feature defined actionable drivers. Alternatively, network-based approaches can uncover new therapeutic opportunities. Applying an integrated phenotypic screening, chemical and phosphoproteomics strategy, here we describe the anaplastic lymphoma kinase (ALK) inhibitor ceritinib as having activity across several ALK -negative lung cancer cell lines and identify new targets and network-wide signaling effects. Combining pharmacological inhibitors and RNA interference revealed a polypharmacology mechanism involving the noncanonical targets IGF1R, FAK1, RSK1 and RSK2. Mutating the downstream signaling hub YB1 protected cells from ceritinib. Consistent with YB1 signaling being known to cause taxol resistance, combination of ceritinib with paclitaxel displayed strong synergy, particularly in cells expressing high FAK autophosphorylation, which we show to be prevalent in lung cancer. Together, we present a systems chemical biology platform for elucidating multikinase inhibitor polypharmacology mechanisms, subsequent design of synergistic drug combinations, and identification of mechanistic biomarker candidates.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.2489</identifier><identifier>PMID: 28991240</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/67/1059 ; 631/92/275 ; 631/92/360 ; 631/92/475 ; 82/51 ; 82/58 ; 96/95 ; 96/98 ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Biochemical Engineering ; Biochemistry ; Biomarkers ; Bioorganic Chemistry ; Cancer ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - metabolism ; Carcinoma, Non-Small-Cell Lung - pathology ; Cell Biology ; Cell Line, Tumor ; Cell Survival - drug effects ; Chemistry ; Chemistry/Food Science ; Dose-Response Relationship, Drug ; Drug development ; Drug Screening Assays, Antitumor ; Enzyme inhibitors ; Humans ; Inhibitors ; Lung cancer ; Lung Neoplasms - drug therapy ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Lymphoma ; Microtubules - drug effects ; Molecular Structure ; Paclitaxel ; Pharmacology ; Polypharmacology ; Protein Kinase Inhibitors - chemistry ; Protein Kinase Inhibitors - pharmacology ; Protein-tyrosine kinase ; Proteomics ; Pyrimidines - chemistry ; Pyrimidines - pharmacology ; Receptor Protein-Tyrosine Kinases - antagonists &amp; inhibitors ; Receptor Protein-Tyrosine Kinases - metabolism ; Ribonucleic acid ; Ribosomal protein S6 kinase ; RNA ; RNA Interference ; RNA-mediated interference ; Signaling ; Structure-Activity Relationship ; Sulfones - chemistry ; Sulfones - pharmacology ; Target recognition ; Taxol ; Tumor cell lines</subject><ispartof>Nature chemical biology, 2017-12, Vol.13 (12), p.1222-1231</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>Copyright Nature Publishing Group Dec 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-81fa8a67c54fc43f5cac7bda38a3f3b897da310d184dbbf743a42b58772044523</citedby><cites>FETCH-LOGICAL-c454t-81fa8a67c54fc43f5cac7bda38a3f3b897da310d184dbbf743a42b58772044523</cites><orcidid>0000-0002-8242-2770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.2489$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.2489$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28991240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuenzi, Brent M</creatorcontrib><creatorcontrib>Remsing Rix, Lily L</creatorcontrib><creatorcontrib>Stewart, Paul A</creatorcontrib><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Kinose, Fumi</creatorcontrib><creatorcontrib>Bryant, Annamarie T</creatorcontrib><creatorcontrib>Boyle, Theresa A</creatorcontrib><creatorcontrib>Koomen, John M</creatorcontrib><creatorcontrib>Haura, Eric B</creatorcontrib><creatorcontrib>Rix, Uwe</creatorcontrib><title>Polypharmacology-based ceritinib repurposing using integrated functional proteomics</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>A systems chemical biology approach to characterize beneficial off-target effects revealed a polypharmacology mechanism for the multikinase inhibitor ceritinib and a repurposing opportunity through rational design of a synergistic drug combination. Targeted drugs are effective when they directly inhibit strong disease drivers, but only a small fraction of diseases feature defined actionable drivers. Alternatively, network-based approaches can uncover new therapeutic opportunities. Applying an integrated phenotypic screening, chemical and phosphoproteomics strategy, here we describe the anaplastic lymphoma kinase (ALK) inhibitor ceritinib as having activity across several ALK -negative lung cancer cell lines and identify new targets and network-wide signaling effects. Combining pharmacological inhibitors and RNA interference revealed a polypharmacology mechanism involving the noncanonical targets IGF1R, FAK1, RSK1 and RSK2. Mutating the downstream signaling hub YB1 protected cells from ceritinib. Consistent with YB1 signaling being known to cause taxol resistance, combination of ceritinib with paclitaxel displayed strong synergy, particularly in cells expressing high FAK autophosphorylation, which we show to be prevalent in lung cancer. Together, we present a systems chemical biology platform for elucidating multikinase inhibitor polypharmacology mechanisms, subsequent design of synergistic drug combinations, and identification of mechanistic biomarker candidates.</description><subject>631/67/1059</subject><subject>631/92/275</subject><subject>631/92/360</subject><subject>631/92/475</subject><subject>82/51</subject><subject>82/58</subject><subject>96/95</subject><subject>96/98</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Biomarkers</subject><subject>Bioorganic Chemistry</subject><subject>Cancer</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug development</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Enzyme inhibitors</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Lymphoma</subject><subject>Microtubules - drug effects</subject><subject>Molecular Structure</subject><subject>Paclitaxel</subject><subject>Pharmacology</subject><subject>Polypharmacology</subject><subject>Protein Kinase Inhibitors - chemistry</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein-tyrosine kinase</subject><subject>Proteomics</subject><subject>Pyrimidines - chemistry</subject><subject>Pyrimidines - pharmacology</subject><subject>Receptor Protein-Tyrosine Kinases - antagonists &amp; inhibitors</subject><subject>Receptor Protein-Tyrosine Kinases - metabolism</subject><subject>Ribonucleic acid</subject><subject>Ribosomal protein S6 kinase</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>RNA-mediated interference</subject><subject>Signaling</subject><subject>Structure-Activity Relationship</subject><subject>Sulfones - chemistry</subject><subject>Sulfones - pharmacology</subject><subject>Target recognition</subject><subject>Taxol</subject><subject>Tumor cell lines</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc1LAzEQxYMotlaPXqXgxcvWZJN0k4sg4hcUFNRzSLLZbWQ3WZNdof-9qdWi4mVmYH68mccD4BjBGYKYnTu9NK2yfpYTxnfAGFGaZ4TM-e52pnAEDmJ8hRDP54jtg1HOOEc5gWPw9OibVbeUoZXaN75eZUpGU061Cba3zqppMN0QOh-tq6fDZ7WuN3WQfcKqweneeiebaRd8b3xrdTwEe5Vsojn66hPwcnP9fHWXLR5u768uF5kmlPQZQ5Vkcl5oSipNcEW11IUqJWYSV1gxXqQZwRIxUipVFQRLkivKiiKHyVSOJ-Bio9sNqjWlNq4PshFdsK0MK-GlFb83zi5F7d8F5ZAzRJPA2ZdA8G-Dib1obdSmaaQzfogCccIhI-QTPf2DvvohJN9rqkhMjhFPVLahdPAxBlNtn0FQrOMS33GJdVyJP_npYEt_55OA2QaIaeVqE36c_VfxAwwZpVA</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Kuenzi, Brent M</creator><creator>Remsing Rix, Lily L</creator><creator>Stewart, Paul A</creator><creator>Fang, Bin</creator><creator>Kinose, Fumi</creator><creator>Bryant, Annamarie T</creator><creator>Boyle, Theresa A</creator><creator>Koomen, John M</creator><creator>Haura, Eric B</creator><creator>Rix, Uwe</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8242-2770</orcidid></search><sort><creationdate>20171201</creationdate><title>Polypharmacology-based ceritinib repurposing using integrated functional proteomics</title><author>Kuenzi, Brent M ; Remsing Rix, Lily L ; Stewart, Paul A ; Fang, Bin ; Kinose, Fumi ; Bryant, Annamarie T ; Boyle, Theresa A ; Koomen, John M ; Haura, Eric B ; Rix, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-81fa8a67c54fc43f5cac7bda38a3f3b897da310d184dbbf743a42b58772044523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/67/1059</topic><topic>631/92/275</topic><topic>631/92/360</topic><topic>631/92/475</topic><topic>82/51</topic><topic>82/58</topic><topic>96/95</topic><topic>96/98</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Biomarkers</topic><topic>Bioorganic Chemistry</topic><topic>Cancer</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug development</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Enzyme inhibitors</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Lymphoma</topic><topic>Microtubules - drug effects</topic><topic>Molecular Structure</topic><topic>Paclitaxel</topic><topic>Pharmacology</topic><topic>Polypharmacology</topic><topic>Protein Kinase Inhibitors - chemistry</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein-tyrosine kinase</topic><topic>Proteomics</topic><topic>Pyrimidines - chemistry</topic><topic>Pyrimidines - pharmacology</topic><topic>Receptor Protein-Tyrosine Kinases - antagonists &amp; inhibitors</topic><topic>Receptor Protein-Tyrosine Kinases - metabolism</topic><topic>Ribonucleic acid</topic><topic>Ribosomal protein S6 kinase</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>RNA-mediated interference</topic><topic>Signaling</topic><topic>Structure-Activity Relationship</topic><topic>Sulfones - chemistry</topic><topic>Sulfones - pharmacology</topic><topic>Target recognition</topic><topic>Taxol</topic><topic>Tumor cell lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuenzi, Brent M</creatorcontrib><creatorcontrib>Remsing Rix, Lily L</creatorcontrib><creatorcontrib>Stewart, Paul A</creatorcontrib><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Kinose, Fumi</creatorcontrib><creatorcontrib>Bryant, Annamarie T</creatorcontrib><creatorcontrib>Boyle, Theresa A</creatorcontrib><creatorcontrib>Koomen, John M</creatorcontrib><creatorcontrib>Haura, Eric B</creatorcontrib><creatorcontrib>Rix, Uwe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuenzi, Brent M</au><au>Remsing Rix, Lily L</au><au>Stewart, Paul A</au><au>Fang, Bin</au><au>Kinose, Fumi</au><au>Bryant, Annamarie T</au><au>Boyle, Theresa A</au><au>Koomen, John M</au><au>Haura, Eric B</au><au>Rix, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polypharmacology-based ceritinib repurposing using integrated functional proteomics</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>13</volume><issue>12</issue><spage>1222</spage><epage>1231</epage><pages>1222-1231</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>A systems chemical biology approach to characterize beneficial off-target effects revealed a polypharmacology mechanism for the multikinase inhibitor ceritinib and a repurposing opportunity through rational design of a synergistic drug combination. Targeted drugs are effective when they directly inhibit strong disease drivers, but only a small fraction of diseases feature defined actionable drivers. Alternatively, network-based approaches can uncover new therapeutic opportunities. Applying an integrated phenotypic screening, chemical and phosphoproteomics strategy, here we describe the anaplastic lymphoma kinase (ALK) inhibitor ceritinib as having activity across several ALK -negative lung cancer cell lines and identify new targets and network-wide signaling effects. Combining pharmacological inhibitors and RNA interference revealed a polypharmacology mechanism involving the noncanonical targets IGF1R, FAK1, RSK1 and RSK2. Mutating the downstream signaling hub YB1 protected cells from ceritinib. Consistent with YB1 signaling being known to cause taxol resistance, combination of ceritinib with paclitaxel displayed strong synergy, particularly in cells expressing high FAK autophosphorylation, which we show to be prevalent in lung cancer. Together, we present a systems chemical biology platform for elucidating multikinase inhibitor polypharmacology mechanisms, subsequent design of synergistic drug combinations, and identification of mechanistic biomarker candidates.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28991240</pmid><doi>10.1038/nchembio.2489</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8242-2770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2017-12, Vol.13 (12), p.1222-1231
issn 1552-4450
1552-4469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5909815
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects 631/67/1059
631/92/275
631/92/360
631/92/475
82/51
82/58
96/95
96/98
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Biochemical Engineering
Biochemistry
Biomarkers
Bioorganic Chemistry
Cancer
Carcinoma, Non-Small-Cell Lung - drug therapy
Carcinoma, Non-Small-Cell Lung - metabolism
Carcinoma, Non-Small-Cell Lung - pathology
Cell Biology
Cell Line, Tumor
Cell Survival - drug effects
Chemistry
Chemistry/Food Science
Dose-Response Relationship, Drug
Drug development
Drug Screening Assays, Antitumor
Enzyme inhibitors
Humans
Inhibitors
Lung cancer
Lung Neoplasms - drug therapy
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Lymphoma
Microtubules - drug effects
Molecular Structure
Paclitaxel
Pharmacology
Polypharmacology
Protein Kinase Inhibitors - chemistry
Protein Kinase Inhibitors - pharmacology
Protein-tyrosine kinase
Proteomics
Pyrimidines - chemistry
Pyrimidines - pharmacology
Receptor Protein-Tyrosine Kinases - antagonists & inhibitors
Receptor Protein-Tyrosine Kinases - metabolism
Ribonucleic acid
Ribosomal protein S6 kinase
RNA
RNA Interference
RNA-mediated interference
Signaling
Structure-Activity Relationship
Sulfones - chemistry
Sulfones - pharmacology
Target recognition
Taxol
Tumor cell lines
title Polypharmacology-based ceritinib repurposing using integrated functional proteomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polypharmacology-based%20ceritinib%20repurposing%20using%20integrated%20functional%20proteomics&rft.jtitle=Nature%20chemical%20biology&rft.au=Kuenzi,%20Brent%20M&rft.date=2017-12-01&rft.volume=13&rft.issue=12&rft.spage=1222&rft.epage=1231&rft.pages=1222-1231&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.2489&rft_dat=%3Cproquest_pubme%3E1949084415%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978442319&rft_id=info:pmid/28991240&rfr_iscdi=true