Evidence for an Optimal Algorithm Underlying Signal Combination in Human Visual Cortex

How does the cortex combine information from multiple sources? We tested several computational models against data from steady-state electroencephalography (EEG) experiments in humans, using periodic visual stimuli combined across either retinal location or eye-of-presentation. A model in which sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2017-01, Vol.27 (1), p.254-264
Hauptverfasser: Baker, Daniel H, Wade, Alex R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 1
container_start_page 254
container_title Cerebral cortex (New York, N.Y. 1991)
container_volume 27
creator Baker, Daniel H
Wade, Alex R
description How does the cortex combine information from multiple sources? We tested several computational models against data from steady-state electroencephalography (EEG) experiments in humans, using periodic visual stimuli combined across either retinal location or eye-of-presentation. A model in which signals are raised to an exponent before being summed in both the numerator and the denominator of a gain control nonlinearity gave the best account of the data. This model also predicted the pattern of responses in a range of additional conditions accurately and with no free parameters, as well as predicting responses at harmonic and intermodulation frequencies between 1 and 30 Hz. We speculate that this model implements the optimal algorithm for combining multiple noisy inputs, in which responses are proportional to the weighted sum of both inputs. This suggests a novel purpose for cortical gain control: implementing optimal signal combination via mutual inhibition, perhaps explaining its ubiquity as a neural computation.
doi_str_mv 10.1093/cercor/bhw395
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5903417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1854107628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-be4f46a00eabf14f9104771c1eeddc1ffa65947c3b29186863d319baaea048083</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCI95ErypFLwBs7D1-QUFUeUiUO0F4tx9m0Rold7KTQvyelBcFpV5rZ2dkdQi6AXgMV7Eaj187flIsPJtI9cgw8o3ECQuwPPeV5zBKAI3ISwhulkCdpckiOkoIygDw7JrPxylRoNUa185Gy0fOyM61qortm7rzpFm00tRX6Zm3sPHoxcztgI9eWxqrOOBsZGz327TA4M6H_xnyHn2fkoFZNwPNdPSXT-_Hr6DGePD88je4msWZF3sUl8ppnilJUZQ28FhvHOWhArCoNda2yVPBcszIRUGRFxioGolQKFeUFLdgpud3qLvuyxUqj7bxq5NIPN_i1dMrI_4g1Czl3K5kKyjjkg8DVTsC79x5DJ1sTNDaNsuj6IKFIOdA8Sza74i1VexeCx_p3DVC5yUJus5DbLAb-5V9vv-yf57MvEFiJHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854107628</pqid></control><display><type>article</type><title>Evidence for an Optimal Algorithm Underlying Signal Combination in Human Visual Cortex</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Baker, Daniel H ; Wade, Alex R</creator><creatorcontrib>Baker, Daniel H ; Wade, Alex R</creatorcontrib><description>How does the cortex combine information from multiple sources? We tested several computational models against data from steady-state electroencephalography (EEG) experiments in humans, using periodic visual stimuli combined across either retinal location or eye-of-presentation. A model in which signals are raised to an exponent before being summed in both the numerator and the denominator of a gain control nonlinearity gave the best account of the data. This model also predicted the pattern of responses in a range of additional conditions accurately and with no free parameters, as well as predicting responses at harmonic and intermodulation frequencies between 1 and 30 Hz. We speculate that this model implements the optimal algorithm for combining multiple noisy inputs, in which responses are proportional to the weighted sum of both inputs. This suggests a novel purpose for cortical gain control: implementing optimal signal combination via mutual inhibition, perhaps explaining its ubiquity as a neural computation.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhw395</identifier><identifier>PMID: 28031176</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Adult ; Algorithms ; Brain Mapping ; Computer Simulation ; Evidence-Based Medicine ; Evoked Potentials, Visual - physiology ; Female ; Humans ; Information Storage and Retrieval - methods ; Male ; Models, Neurological ; Models, Statistical ; Nerve Net - physiology ; Neural Inhibition - physiology ; Original ; Photic Stimulation - methods ; Synaptic Transmission - physiology ; Visual Cortex - physiology ; Visual Perception - physiology ; Young Adult</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2017-01, Vol.27 (1), p.254-264</ispartof><rights>The Author 2016. Published by Oxford University Press.</rights><rights>The Author 2016. Published by Oxford University Press. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-be4f46a00eabf14f9104771c1eeddc1ffa65947c3b29186863d319baaea048083</citedby><cites>FETCH-LOGICAL-c387t-be4f46a00eabf14f9104771c1eeddc1ffa65947c3b29186863d319baaea048083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28031176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, Daniel H</creatorcontrib><creatorcontrib>Wade, Alex R</creatorcontrib><title>Evidence for an Optimal Algorithm Underlying Signal Combination in Human Visual Cortex</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>How does the cortex combine information from multiple sources? We tested several computational models against data from steady-state electroencephalography (EEG) experiments in humans, using periodic visual stimuli combined across either retinal location or eye-of-presentation. A model in which signals are raised to an exponent before being summed in both the numerator and the denominator of a gain control nonlinearity gave the best account of the data. This model also predicted the pattern of responses in a range of additional conditions accurately and with no free parameters, as well as predicting responses at harmonic and intermodulation frequencies between 1 and 30 Hz. We speculate that this model implements the optimal algorithm for combining multiple noisy inputs, in which responses are proportional to the weighted sum of both inputs. This suggests a novel purpose for cortical gain control: implementing optimal signal combination via mutual inhibition, perhaps explaining its ubiquity as a neural computation.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain Mapping</subject><subject>Computer Simulation</subject><subject>Evidence-Based Medicine</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Information Storage and Retrieval - methods</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Nerve Net - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Original</subject><subject>Photic Stimulation - methods</subject><subject>Synaptic Transmission - physiology</subject><subject>Visual Cortex - physiology</subject><subject>Visual Perception - physiology</subject><subject>Young Adult</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctOwzAQtBCI95ErypFLwBs7D1-QUFUeUiUO0F4tx9m0Rold7KTQvyelBcFpV5rZ2dkdQi6AXgMV7Eaj187flIsPJtI9cgw8o3ECQuwPPeV5zBKAI3ISwhulkCdpckiOkoIygDw7JrPxylRoNUa185Gy0fOyM61qortm7rzpFm00tRX6Zm3sPHoxcztgI9eWxqrOOBsZGz327TA4M6H_xnyHn2fkoFZNwPNdPSXT-_Hr6DGePD88je4msWZF3sUl8ppnilJUZQ28FhvHOWhArCoNda2yVPBcszIRUGRFxioGolQKFeUFLdgpud3qLvuyxUqj7bxq5NIPN_i1dMrI_4g1Czl3K5kKyjjkg8DVTsC79x5DJ1sTNDaNsuj6IKFIOdA8Sza74i1VexeCx_p3DVC5yUJus5DbLAb-5V9vv-yf57MvEFiJHA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Baker, Daniel H</creator><creator>Wade, Alex R</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170101</creationdate><title>Evidence for an Optimal Algorithm Underlying Signal Combination in Human Visual Cortex</title><author>Baker, Daniel H ; Wade, Alex R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-be4f46a00eabf14f9104771c1eeddc1ffa65947c3b29186863d319baaea048083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain Mapping</topic><topic>Computer Simulation</topic><topic>Evidence-Based Medicine</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Information Storage and Retrieval - methods</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Nerve Net - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Original</topic><topic>Photic Stimulation - methods</topic><topic>Synaptic Transmission - physiology</topic><topic>Visual Cortex - physiology</topic><topic>Visual Perception - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Daniel H</creatorcontrib><creatorcontrib>Wade, Alex R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Daniel H</au><au>Wade, Alex R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for an Optimal Algorithm Underlying Signal Combination in Human Visual Cortex</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>27</volume><issue>1</issue><spage>254</spage><epage>264</epage><pages>254-264</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>How does the cortex combine information from multiple sources? We tested several computational models against data from steady-state electroencephalography (EEG) experiments in humans, using periodic visual stimuli combined across either retinal location or eye-of-presentation. A model in which signals are raised to an exponent before being summed in both the numerator and the denominator of a gain control nonlinearity gave the best account of the data. This model also predicted the pattern of responses in a range of additional conditions accurately and with no free parameters, as well as predicting responses at harmonic and intermodulation frequencies between 1 and 30 Hz. We speculate that this model implements the optimal algorithm for combining multiple noisy inputs, in which responses are proportional to the weighted sum of both inputs. This suggests a novel purpose for cortical gain control: implementing optimal signal combination via mutual inhibition, perhaps explaining its ubiquity as a neural computation.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>28031176</pmid><doi>10.1093/cercor/bhw395</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-3211
ispartof Cerebral cortex (New York, N.Y. 1991), 2017-01, Vol.27 (1), p.254-264
issn 1047-3211
1460-2199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5903417
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adult
Algorithms
Brain Mapping
Computer Simulation
Evidence-Based Medicine
Evoked Potentials, Visual - physiology
Female
Humans
Information Storage and Retrieval - methods
Male
Models, Neurological
Models, Statistical
Nerve Net - physiology
Neural Inhibition - physiology
Original
Photic Stimulation - methods
Synaptic Transmission - physiology
Visual Cortex - physiology
Visual Perception - physiology
Young Adult
title Evidence for an Optimal Algorithm Underlying Signal Combination in Human Visual Cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20an%20Optimal%20Algorithm%20Underlying%20Signal%20Combination%20in%20Human%20Visual%20Cortex&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Baker,%20Daniel%20H&rft.date=2017-01-01&rft.volume=27&rft.issue=1&rft.spage=254&rft.epage=264&rft.pages=254-264&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhw395&rft_dat=%3Cproquest_pubme%3E1854107628%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854107628&rft_id=info:pmid/28031176&rfr_iscdi=true