Evidence for an Optimal Algorithm Underlying Signal Combination in Human Visual Cortex
How does the cortex combine information from multiple sources? We tested several computational models against data from steady-state electroencephalography (EEG) experiments in humans, using periodic visual stimuli combined across either retinal location or eye-of-presentation. A model in which sign...
Gespeichert in:
Veröffentlicht in: | Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2017-01, Vol.27 (1), p.254-264 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | 1 |
container_start_page | 254 |
container_title | Cerebral cortex (New York, N.Y. 1991) |
container_volume | 27 |
creator | Baker, Daniel H Wade, Alex R |
description | How does the cortex combine information from multiple sources? We tested several computational models against data from steady-state electroencephalography (EEG) experiments in humans, using periodic visual stimuli combined across either retinal location or eye-of-presentation. A model in which signals are raised to an exponent before being summed in both the numerator and the denominator of a gain control nonlinearity gave the best account of the data. This model also predicted the pattern of responses in a range of additional conditions accurately and with no free parameters, as well as predicting responses at harmonic and intermodulation frequencies between 1 and 30 Hz. We speculate that this model implements the optimal algorithm for combining multiple noisy inputs, in which responses are proportional to the weighted sum of both inputs. This suggests a novel purpose for cortical gain control: implementing optimal signal combination via mutual inhibition, perhaps explaining its ubiquity as a neural computation. |
doi_str_mv | 10.1093/cercor/bhw395 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5903417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1854107628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-be4f46a00eabf14f9104771c1eeddc1ffa65947c3b29186863d319baaea048083</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCI95ErypFLwBs7D1-QUFUeUiUO0F4tx9m0Rold7KTQvyelBcFpV5rZ2dkdQi6AXgMV7Eaj187flIsPJtI9cgw8o3ECQuwPPeV5zBKAI3ISwhulkCdpckiOkoIygDw7JrPxylRoNUa185Gy0fOyM61qortm7rzpFm00tRX6Zm3sPHoxcztgI9eWxqrOOBsZGz327TA4M6H_xnyHn2fkoFZNwPNdPSXT-_Hr6DGePD88je4msWZF3sUl8ppnilJUZQ28FhvHOWhArCoNda2yVPBcszIRUGRFxioGolQKFeUFLdgpud3qLvuyxUqj7bxq5NIPN_i1dMrI_4g1Czl3K5kKyjjkg8DVTsC79x5DJ1sTNDaNsuj6IKFIOdA8Sza74i1VexeCx_p3DVC5yUJus5DbLAb-5V9vv-yf57MvEFiJHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854107628</pqid></control><display><type>article</type><title>Evidence for an Optimal Algorithm Underlying Signal Combination in Human Visual Cortex</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Baker, Daniel H ; Wade, Alex R</creator><creatorcontrib>Baker, Daniel H ; Wade, Alex R</creatorcontrib><description>How does the cortex combine information from multiple sources? We tested several computational models against data from steady-state electroencephalography (EEG) experiments in humans, using periodic visual stimuli combined across either retinal location or eye-of-presentation. A model in which signals are raised to an exponent before being summed in both the numerator and the denominator of a gain control nonlinearity gave the best account of the data. This model also predicted the pattern of responses in a range of additional conditions accurately and with no free parameters, as well as predicting responses at harmonic and intermodulation frequencies between 1 and 30 Hz. We speculate that this model implements the optimal algorithm for combining multiple noisy inputs, in which responses are proportional to the weighted sum of both inputs. This suggests a novel purpose for cortical gain control: implementing optimal signal combination via mutual inhibition, perhaps explaining its ubiquity as a neural computation.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhw395</identifier><identifier>PMID: 28031176</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Adult ; Algorithms ; Brain Mapping ; Computer Simulation ; Evidence-Based Medicine ; Evoked Potentials, Visual - physiology ; Female ; Humans ; Information Storage and Retrieval - methods ; Male ; Models, Neurological ; Models, Statistical ; Nerve Net - physiology ; Neural Inhibition - physiology ; Original ; Photic Stimulation - methods ; Synaptic Transmission - physiology ; Visual Cortex - physiology ; Visual Perception - physiology ; Young Adult</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2017-01, Vol.27 (1), p.254-264</ispartof><rights>The Author 2016. Published by Oxford University Press.</rights><rights>The Author 2016. Published by Oxford University Press. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-be4f46a00eabf14f9104771c1eeddc1ffa65947c3b29186863d319baaea048083</citedby><cites>FETCH-LOGICAL-c387t-be4f46a00eabf14f9104771c1eeddc1ffa65947c3b29186863d319baaea048083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28031176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, Daniel H</creatorcontrib><creatorcontrib>Wade, Alex R</creatorcontrib><title>Evidence for an Optimal Algorithm Underlying Signal Combination in Human Visual Cortex</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>How does the cortex combine information from multiple sources? We tested several computational models against data from steady-state electroencephalography (EEG) experiments in humans, using periodic visual stimuli combined across either retinal location or eye-of-presentation. A model in which signals are raised to an exponent before being summed in both the numerator and the denominator of a gain control nonlinearity gave the best account of the data. This model also predicted the pattern of responses in a range of additional conditions accurately and with no free parameters, as well as predicting responses at harmonic and intermodulation frequencies between 1 and 30 Hz. We speculate that this model implements the optimal algorithm for combining multiple noisy inputs, in which responses are proportional to the weighted sum of both inputs. This suggests a novel purpose for cortical gain control: implementing optimal signal combination via mutual inhibition, perhaps explaining its ubiquity as a neural computation.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain Mapping</subject><subject>Computer Simulation</subject><subject>Evidence-Based Medicine</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Information Storage and Retrieval - methods</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Nerve Net - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Original</subject><subject>Photic Stimulation - methods</subject><subject>Synaptic Transmission - physiology</subject><subject>Visual Cortex - physiology</subject><subject>Visual Perception - physiology</subject><subject>Young Adult</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctOwzAQtBCI95ErypFLwBs7D1-QUFUeUiUO0F4tx9m0Rold7KTQvyelBcFpV5rZ2dkdQi6AXgMV7Eaj187flIsPJtI9cgw8o3ECQuwPPeV5zBKAI3ISwhulkCdpckiOkoIygDw7JrPxylRoNUa185Gy0fOyM61qortm7rzpFm00tRX6Zm3sPHoxcztgI9eWxqrOOBsZGz327TA4M6H_xnyHn2fkoFZNwPNdPSXT-_Hr6DGePD88je4msWZF3sUl8ppnilJUZQ28FhvHOWhArCoNda2yVPBcszIRUGRFxioGolQKFeUFLdgpud3qLvuyxUqj7bxq5NIPN_i1dMrI_4g1Czl3K5kKyjjkg8DVTsC79x5DJ1sTNDaNsuj6IKFIOdA8Sza74i1VexeCx_p3DVC5yUJus5DbLAb-5V9vv-yf57MvEFiJHA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Baker, Daniel H</creator><creator>Wade, Alex R</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170101</creationdate><title>Evidence for an Optimal Algorithm Underlying Signal Combination in Human Visual Cortex</title><author>Baker, Daniel H ; Wade, Alex R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-be4f46a00eabf14f9104771c1eeddc1ffa65947c3b29186863d319baaea048083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain Mapping</topic><topic>Computer Simulation</topic><topic>Evidence-Based Medicine</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Information Storage and Retrieval - methods</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Nerve Net - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Original</topic><topic>Photic Stimulation - methods</topic><topic>Synaptic Transmission - physiology</topic><topic>Visual Cortex - physiology</topic><topic>Visual Perception - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Daniel H</creatorcontrib><creatorcontrib>Wade, Alex R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Daniel H</au><au>Wade, Alex R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for an Optimal Algorithm Underlying Signal Combination in Human Visual Cortex</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>27</volume><issue>1</issue><spage>254</spage><epage>264</epage><pages>254-264</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>How does the cortex combine information from multiple sources? We tested several computational models against data from steady-state electroencephalography (EEG) experiments in humans, using periodic visual stimuli combined across either retinal location or eye-of-presentation. A model in which signals are raised to an exponent before being summed in both the numerator and the denominator of a gain control nonlinearity gave the best account of the data. This model also predicted the pattern of responses in a range of additional conditions accurately and with no free parameters, as well as predicting responses at harmonic and intermodulation frequencies between 1 and 30 Hz. We speculate that this model implements the optimal algorithm for combining multiple noisy inputs, in which responses are proportional to the weighted sum of both inputs. This suggests a novel purpose for cortical gain control: implementing optimal signal combination via mutual inhibition, perhaps explaining its ubiquity as a neural computation.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>28031176</pmid><doi>10.1093/cercor/bhw395</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-3211 |
ispartof | Cerebral cortex (New York, N.Y. 1991), 2017-01, Vol.27 (1), p.254-264 |
issn | 1047-3211 1460-2199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5903417 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adult Algorithms Brain Mapping Computer Simulation Evidence-Based Medicine Evoked Potentials, Visual - physiology Female Humans Information Storage and Retrieval - methods Male Models, Neurological Models, Statistical Nerve Net - physiology Neural Inhibition - physiology Original Photic Stimulation - methods Synaptic Transmission - physiology Visual Cortex - physiology Visual Perception - physiology Young Adult |
title | Evidence for an Optimal Algorithm Underlying Signal Combination in Human Visual Cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20an%20Optimal%20Algorithm%20Underlying%20Signal%20Combination%20in%20Human%20Visual%20Cortex&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Baker,%20Daniel%20H&rft.date=2017-01-01&rft.volume=27&rft.issue=1&rft.spage=254&rft.epage=264&rft.pages=254-264&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhw395&rft_dat=%3Cproquest_pubme%3E1854107628%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854107628&rft_id=info:pmid/28031176&rfr_iscdi=true |