The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds

Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic py...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2000-06, Vol.123 (2), p.497-508
Hauptverfasser: Jinshan Ke, Behal, Robert H., Stephanie L. Back, Nikolau, Basil J., Wurtele, Eve Syrkin, Oliver, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 508
container_issue 2
container_start_page 497
container_title Plant physiology (Bethesda)
container_volume 123
creator Jinshan Ke
Behal, Robert H.
Stephanie L. Back
Nikolau, Basil J.
Wurtele, Eve Syrkin
Oliver, David J.
description Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds.
doi_str_mv 10.1104/pp.123.2.497
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279280</jstor_id><sourcerecordid>4279280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-24d257574b52b7ec3db92010fa153684f8c5b98cc2ad6014ca479a4a12dc2b983</originalsourceid><addsrcrecordid>eNqF0UGL1DAUB_Agijuu3jyKFBFPdkzSpE3ByzDrqrCguOs5pOnrTIZOUpN0oO6X35QZ1tWLp4T8fy_k5SH0kuAlIZh9GIYlocWSLlldPUILwguaU87EY7TAOO2xEPUZehbCDmNMCsKeojOCBa-JwAt0e7OF7IfrIXNd9n3y40FFyC5gO7XebcCqAJmybbbSEKc-Xzuwv6c9ZKvserJxC3EGxmaXKsYpKdOegmDCfH4BB-jdYOwmW3nVmNYNc3IN0Ibn6Emn-gAvTus5-nn56Wb9Jb_69vnrenWVay5EzClrKa94xRpOmwp00TY1xQR3KvVaCtYJzZtaaE1VW2LCtGJVrZgitNU0BcU5-ni8dxibPbQabPSql4M3e-Un6ZSRfyfWbOXGHSSvMZnL353Kvfs1Qohyb4KGvlcW3BhkRSitcYH_C0nFOSclSfDNP3DnRm_TH0hKRAJFNaP3R6S9C8FDd_9gguU8eTkMMk1eUpkmn_jrh00-wMdRJ_D2BFTQqu-8stqEP45hWpZzt6-ObBei8_cxo1VN0y13wXPAmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218613371</pqid></control><display><type>article</type><title>The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jinshan Ke ; Behal, Robert H. ; Stephanie L. Back ; Nikolau, Basil J. ; Wurtele, Eve Syrkin ; Oliver, David J.</creator><creatorcontrib>Jinshan Ke ; Behal, Robert H. ; Stephanie L. Back ; Nikolau, Basil J. ; Wurtele, Eve Syrkin ; Oliver, David J.</creatorcontrib><description>Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.123.2.497</identifier><identifier>PMID: 10859180</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Accumulation ; Acetate-CoA Ligase - chemistry ; Acetate-CoA Ligase - genetics ; Acetate-CoA Ligase - metabolism ; Acetyl-CoA synthase ; Agronomy. Soil science and plant productions ; Amino Acid Sequence ; Arabidopsis ; Arabidopsis - embryology ; Arabidopsis - enzymology ; Biochemical Processes and Macromolecular Structures ; Biological and medical sciences ; Biosynthesis ; Chloroplasts ; Cloning, Molecular ; Complementary DNA ; Dehydrogenase ; Economic plant physiology ; Embryos ; Enzymes ; Fatty acids ; Fatty Acids - biosynthesis ; Fundamental and applied biological sciences. Psychology ; In Situ Hybridization ; Lipids ; Messenger RNA ; Metabolism ; Metabolism. Physicochemical requirements ; Molecular Sequence Data ; Nitrogen metabolism and other ones (excepting carbon metabolism) ; Nutrition. Photosynthesis. Respiration. Metabolism ; Plant physiology and development ; Plants ; Plastids ; Plastids - enzymology ; Pyruvate Dehydrogenase Complex - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Seeds ; Seeds - enzymology ; Seeds - growth &amp; development ; Sequence Homology, Amino Acid ; Yeasts</subject><ispartof>Plant physiology (Bethesda), 2000-06, Vol.123 (2), p.497-508</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists Jun 2000</rights><rights>Copyright © 2000, American Society of Plant Physiologists 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-24d257574b52b7ec3db92010fa153684f8c5b98cc2ad6014ca479a4a12dc2b983</citedby><cites>FETCH-LOGICAL-c588t-24d257574b52b7ec3db92010fa153684f8c5b98cc2ad6014ca479a4a12dc2b983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279280$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279280$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1402668$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10859180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jinshan Ke</creatorcontrib><creatorcontrib>Behal, Robert H.</creatorcontrib><creatorcontrib>Stephanie L. Back</creatorcontrib><creatorcontrib>Nikolau, Basil J.</creatorcontrib><creatorcontrib>Wurtele, Eve Syrkin</creatorcontrib><creatorcontrib>Oliver, David J.</creatorcontrib><title>The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds.</description><subject>Accumulation</subject><subject>Acetate-CoA Ligase - chemistry</subject><subject>Acetate-CoA Ligase - genetics</subject><subject>Acetate-CoA Ligase - metabolism</subject><subject>Acetyl-CoA synthase</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Amino Acid Sequence</subject><subject>Arabidopsis</subject><subject>Arabidopsis - embryology</subject><subject>Arabidopsis - enzymology</subject><subject>Biochemical Processes and Macromolecular Structures</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Chloroplasts</subject><subject>Cloning, Molecular</subject><subject>Complementary DNA</subject><subject>Dehydrogenase</subject><subject>Economic plant physiology</subject><subject>Embryos</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fatty Acids - biosynthesis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>In Situ Hybridization</subject><subject>Lipids</subject><subject>Messenger RNA</subject><subject>Metabolism</subject><subject>Metabolism. Physicochemical requirements</subject><subject>Molecular Sequence Data</subject><subject>Nitrogen metabolism and other ones (excepting carbon metabolism)</subject><subject>Nutrition. Photosynthesis. Respiration. Metabolism</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plastids</subject><subject>Plastids - enzymology</subject><subject>Pyruvate Dehydrogenase Complex - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Seeds</subject><subject>Seeds - enzymology</subject><subject>Seeds - growth &amp; development</subject><subject>Sequence Homology, Amino Acid</subject><subject>Yeasts</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0UGL1DAUB_Agijuu3jyKFBFPdkzSpE3ByzDrqrCguOs5pOnrTIZOUpN0oO6X35QZ1tWLp4T8fy_k5SH0kuAlIZh9GIYlocWSLlldPUILwguaU87EY7TAOO2xEPUZehbCDmNMCsKeojOCBa-JwAt0e7OF7IfrIXNd9n3y40FFyC5gO7XebcCqAJmybbbSEKc-Xzuwv6c9ZKvserJxC3EGxmaXKsYpKdOegmDCfH4BB-jdYOwmW3nVmNYNc3IN0Ibn6Emn-gAvTus5-nn56Wb9Jb_69vnrenWVay5EzClrKa94xRpOmwp00TY1xQR3KvVaCtYJzZtaaE1VW2LCtGJVrZgitNU0BcU5-ni8dxibPbQabPSql4M3e-Un6ZSRfyfWbOXGHSSvMZnL353Kvfs1Qohyb4KGvlcW3BhkRSitcYH_C0nFOSclSfDNP3DnRm_TH0hKRAJFNaP3R6S9C8FDd_9gguU8eTkMMk1eUpkmn_jrh00-wMdRJ_D2BFTQqu-8stqEP45hWpZzt6-ObBei8_cxo1VN0y13wXPAmg</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Jinshan Ke</creator><creator>Behal, Robert H.</creator><creator>Stephanie L. Back</creator><creator>Nikolau, Basil J.</creator><creator>Wurtele, Eve Syrkin</creator><creator>Oliver, David J.</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000601</creationdate><title>The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds</title><author>Jinshan Ke ; Behal, Robert H. ; Stephanie L. Back ; Nikolau, Basil J. ; Wurtele, Eve Syrkin ; Oliver, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-24d257574b52b7ec3db92010fa153684f8c5b98cc2ad6014ca479a4a12dc2b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Accumulation</topic><topic>Acetate-CoA Ligase - chemistry</topic><topic>Acetate-CoA Ligase - genetics</topic><topic>Acetate-CoA Ligase - metabolism</topic><topic>Acetyl-CoA synthase</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Amino Acid Sequence</topic><topic>Arabidopsis</topic><topic>Arabidopsis - embryology</topic><topic>Arabidopsis - enzymology</topic><topic>Biochemical Processes and Macromolecular Structures</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Chloroplasts</topic><topic>Cloning, Molecular</topic><topic>Complementary DNA</topic><topic>Dehydrogenase</topic><topic>Economic plant physiology</topic><topic>Embryos</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fatty Acids - biosynthesis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>In Situ Hybridization</topic><topic>Lipids</topic><topic>Messenger RNA</topic><topic>Metabolism</topic><topic>Metabolism. Physicochemical requirements</topic><topic>Molecular Sequence Data</topic><topic>Nitrogen metabolism and other ones (excepting carbon metabolism)</topic><topic>Nutrition. Photosynthesis. Respiration. Metabolism</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plastids</topic><topic>Plastids - enzymology</topic><topic>Pyruvate Dehydrogenase Complex - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Seeds</topic><topic>Seeds - enzymology</topic><topic>Seeds - growth &amp; development</topic><topic>Sequence Homology, Amino Acid</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jinshan Ke</creatorcontrib><creatorcontrib>Behal, Robert H.</creatorcontrib><creatorcontrib>Stephanie L. Back</creatorcontrib><creatorcontrib>Nikolau, Basil J.</creatorcontrib><creatorcontrib>Wurtele, Eve Syrkin</creatorcontrib><creatorcontrib>Oliver, David J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jinshan Ke</au><au>Behal, Robert H.</au><au>Stephanie L. Back</au><au>Nikolau, Basil J.</au><au>Wurtele, Eve Syrkin</au><au>Oliver, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2000-06-01</date><risdate>2000</risdate><volume>123</volume><issue>2</issue><spage>497</spage><epage>508</epage><pages>497-508</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>10859180</pmid><doi>10.1104/pp.123.2.497</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2000-06, Vol.123 (2), p.497-508
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59018
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accumulation
Acetate-CoA Ligase - chemistry
Acetate-CoA Ligase - genetics
Acetate-CoA Ligase - metabolism
Acetyl-CoA synthase
Agronomy. Soil science and plant productions
Amino Acid Sequence
Arabidopsis
Arabidopsis - embryology
Arabidopsis - enzymology
Biochemical Processes and Macromolecular Structures
Biological and medical sciences
Biosynthesis
Chloroplasts
Cloning, Molecular
Complementary DNA
Dehydrogenase
Economic plant physiology
Embryos
Enzymes
Fatty acids
Fatty Acids - biosynthesis
Fundamental and applied biological sciences. Psychology
In Situ Hybridization
Lipids
Messenger RNA
Metabolism
Metabolism. Physicochemical requirements
Molecular Sequence Data
Nitrogen metabolism and other ones (excepting carbon metabolism)
Nutrition. Photosynthesis. Respiration. Metabolism
Plant physiology and development
Plants
Plastids
Plastids - enzymology
Pyruvate Dehydrogenase Complex - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Seeds
Seeds - enzymology
Seeds - growth & development
Sequence Homology, Amino Acid
Yeasts
title The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Pyruvate%20Dehydrogenase%20and%20Acetyl-Coenzyme%20A%20Synthetase%20in%20Fatty%20Acid%20Synthesis%20in%20Developing%20Arabidopsis%20Seeds&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Jinshan%20Ke&rft.date=2000-06-01&rft.volume=123&rft.issue=2&rft.spage=497&rft.epage=508&rft.pages=497-508&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.123.2.497&rft_dat=%3Cjstor_pubme%3E4279280%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218613371&rft_id=info:pmid/10859180&rft_jstor_id=4279280&rfr_iscdi=true