The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds
Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic py...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2000-06, Vol.123 (2), p.497-508 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 508 |
---|---|
container_issue | 2 |
container_start_page | 497 |
container_title | Plant physiology (Bethesda) |
container_volume | 123 |
creator | Jinshan Ke Behal, Robert H. Stephanie L. Back Nikolau, Basil J. Wurtele, Eve Syrkin Oliver, David J. |
description | Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds. |
doi_str_mv | 10.1104/pp.123.2.497 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279280</jstor_id><sourcerecordid>4279280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-24d257574b52b7ec3db92010fa153684f8c5b98cc2ad6014ca479a4a12dc2b983</originalsourceid><addsrcrecordid>eNqF0UGL1DAUB_Agijuu3jyKFBFPdkzSpE3ByzDrqrCguOs5pOnrTIZOUpN0oO6X35QZ1tWLp4T8fy_k5SH0kuAlIZh9GIYlocWSLlldPUILwguaU87EY7TAOO2xEPUZehbCDmNMCsKeojOCBa-JwAt0e7OF7IfrIXNd9n3y40FFyC5gO7XebcCqAJmybbbSEKc-Xzuwv6c9ZKvserJxC3EGxmaXKsYpKdOegmDCfH4BB-jdYOwmW3nVmNYNc3IN0Ibn6Emn-gAvTus5-nn56Wb9Jb_69vnrenWVay5EzClrKa94xRpOmwp00TY1xQR3KvVaCtYJzZtaaE1VW2LCtGJVrZgitNU0BcU5-ni8dxibPbQabPSql4M3e-Un6ZSRfyfWbOXGHSSvMZnL353Kvfs1Qohyb4KGvlcW3BhkRSitcYH_C0nFOSclSfDNP3DnRm_TH0hKRAJFNaP3R6S9C8FDd_9gguU8eTkMMk1eUpkmn_jrh00-wMdRJ_D2BFTQqu-8stqEP45hWpZzt6-ObBei8_cxo1VN0y13wXPAmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218613371</pqid></control><display><type>article</type><title>The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jinshan Ke ; Behal, Robert H. ; Stephanie L. Back ; Nikolau, Basil J. ; Wurtele, Eve Syrkin ; Oliver, David J.</creator><creatorcontrib>Jinshan Ke ; Behal, Robert H. ; Stephanie L. Back ; Nikolau, Basil J. ; Wurtele, Eve Syrkin ; Oliver, David J.</creatorcontrib><description>Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.123.2.497</identifier><identifier>PMID: 10859180</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Accumulation ; Acetate-CoA Ligase - chemistry ; Acetate-CoA Ligase - genetics ; Acetate-CoA Ligase - metabolism ; Acetyl-CoA synthase ; Agronomy. Soil science and plant productions ; Amino Acid Sequence ; Arabidopsis ; Arabidopsis - embryology ; Arabidopsis - enzymology ; Biochemical Processes and Macromolecular Structures ; Biological and medical sciences ; Biosynthesis ; Chloroplasts ; Cloning, Molecular ; Complementary DNA ; Dehydrogenase ; Economic plant physiology ; Embryos ; Enzymes ; Fatty acids ; Fatty Acids - biosynthesis ; Fundamental and applied biological sciences. Psychology ; In Situ Hybridization ; Lipids ; Messenger RNA ; Metabolism ; Metabolism. Physicochemical requirements ; Molecular Sequence Data ; Nitrogen metabolism and other ones (excepting carbon metabolism) ; Nutrition. Photosynthesis. Respiration. Metabolism ; Plant physiology and development ; Plants ; Plastids ; Plastids - enzymology ; Pyruvate Dehydrogenase Complex - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Seeds ; Seeds - enzymology ; Seeds - growth & development ; Sequence Homology, Amino Acid ; Yeasts</subject><ispartof>Plant physiology (Bethesda), 2000-06, Vol.123 (2), p.497-508</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists Jun 2000</rights><rights>Copyright © 2000, American Society of Plant Physiologists 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-24d257574b52b7ec3db92010fa153684f8c5b98cc2ad6014ca479a4a12dc2b983</citedby><cites>FETCH-LOGICAL-c588t-24d257574b52b7ec3db92010fa153684f8c5b98cc2ad6014ca479a4a12dc2b983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279280$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279280$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1402668$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10859180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jinshan Ke</creatorcontrib><creatorcontrib>Behal, Robert H.</creatorcontrib><creatorcontrib>Stephanie L. Back</creatorcontrib><creatorcontrib>Nikolau, Basil J.</creatorcontrib><creatorcontrib>Wurtele, Eve Syrkin</creatorcontrib><creatorcontrib>Oliver, David J.</creatorcontrib><title>The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds.</description><subject>Accumulation</subject><subject>Acetate-CoA Ligase - chemistry</subject><subject>Acetate-CoA Ligase - genetics</subject><subject>Acetate-CoA Ligase - metabolism</subject><subject>Acetyl-CoA synthase</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Amino Acid Sequence</subject><subject>Arabidopsis</subject><subject>Arabidopsis - embryology</subject><subject>Arabidopsis - enzymology</subject><subject>Biochemical Processes and Macromolecular Structures</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Chloroplasts</subject><subject>Cloning, Molecular</subject><subject>Complementary DNA</subject><subject>Dehydrogenase</subject><subject>Economic plant physiology</subject><subject>Embryos</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fatty Acids - biosynthesis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>In Situ Hybridization</subject><subject>Lipids</subject><subject>Messenger RNA</subject><subject>Metabolism</subject><subject>Metabolism. Physicochemical requirements</subject><subject>Molecular Sequence Data</subject><subject>Nitrogen metabolism and other ones (excepting carbon metabolism)</subject><subject>Nutrition. Photosynthesis. Respiration. Metabolism</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plastids</subject><subject>Plastids - enzymology</subject><subject>Pyruvate Dehydrogenase Complex - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Seeds</subject><subject>Seeds - enzymology</subject><subject>Seeds - growth & development</subject><subject>Sequence Homology, Amino Acid</subject><subject>Yeasts</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0UGL1DAUB_Agijuu3jyKFBFPdkzSpE3ByzDrqrCguOs5pOnrTIZOUpN0oO6X35QZ1tWLp4T8fy_k5SH0kuAlIZh9GIYlocWSLlldPUILwguaU87EY7TAOO2xEPUZehbCDmNMCsKeojOCBa-JwAt0e7OF7IfrIXNd9n3y40FFyC5gO7XebcCqAJmybbbSEKc-Xzuwv6c9ZKvserJxC3EGxmaXKsYpKdOegmDCfH4BB-jdYOwmW3nVmNYNc3IN0Ibn6Emn-gAvTus5-nn56Wb9Jb_69vnrenWVay5EzClrKa94xRpOmwp00TY1xQR3KvVaCtYJzZtaaE1VW2LCtGJVrZgitNU0BcU5-ni8dxibPbQabPSql4M3e-Un6ZSRfyfWbOXGHSSvMZnL353Kvfs1Qohyb4KGvlcW3BhkRSitcYH_C0nFOSclSfDNP3DnRm_TH0hKRAJFNaP3R6S9C8FDd_9gguU8eTkMMk1eUpkmn_jrh00-wMdRJ_D2BFTQqu-8stqEP45hWpZzt6-ObBei8_cxo1VN0y13wXPAmg</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Jinshan Ke</creator><creator>Behal, Robert H.</creator><creator>Stephanie L. Back</creator><creator>Nikolau, Basil J.</creator><creator>Wurtele, Eve Syrkin</creator><creator>Oliver, David J.</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000601</creationdate><title>The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds</title><author>Jinshan Ke ; Behal, Robert H. ; Stephanie L. Back ; Nikolau, Basil J. ; Wurtele, Eve Syrkin ; Oliver, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-24d257574b52b7ec3db92010fa153684f8c5b98cc2ad6014ca479a4a12dc2b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Accumulation</topic><topic>Acetate-CoA Ligase - chemistry</topic><topic>Acetate-CoA Ligase - genetics</topic><topic>Acetate-CoA Ligase - metabolism</topic><topic>Acetyl-CoA synthase</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Amino Acid Sequence</topic><topic>Arabidopsis</topic><topic>Arabidopsis - embryology</topic><topic>Arabidopsis - enzymology</topic><topic>Biochemical Processes and Macromolecular Structures</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Chloroplasts</topic><topic>Cloning, Molecular</topic><topic>Complementary DNA</topic><topic>Dehydrogenase</topic><topic>Economic plant physiology</topic><topic>Embryos</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fatty Acids - biosynthesis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>In Situ Hybridization</topic><topic>Lipids</topic><topic>Messenger RNA</topic><topic>Metabolism</topic><topic>Metabolism. Physicochemical requirements</topic><topic>Molecular Sequence Data</topic><topic>Nitrogen metabolism and other ones (excepting carbon metabolism)</topic><topic>Nutrition. Photosynthesis. Respiration. Metabolism</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plastids</topic><topic>Plastids - enzymology</topic><topic>Pyruvate Dehydrogenase Complex - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Seeds</topic><topic>Seeds - enzymology</topic><topic>Seeds - growth & development</topic><topic>Sequence Homology, Amino Acid</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jinshan Ke</creatorcontrib><creatorcontrib>Behal, Robert H.</creatorcontrib><creatorcontrib>Stephanie L. Back</creatorcontrib><creatorcontrib>Nikolau, Basil J.</creatorcontrib><creatorcontrib>Wurtele, Eve Syrkin</creatorcontrib><creatorcontrib>Oliver, David J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jinshan Ke</au><au>Behal, Robert H.</au><au>Stephanie L. Back</au><au>Nikolau, Basil J.</au><au>Wurtele, Eve Syrkin</au><au>Oliver, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2000-06-01</date><risdate>2000</risdate><volume>123</volume><issue>2</issue><spage>497</spage><epage>508</epage><pages>497-508</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>10859180</pmid><doi>10.1104/pp.123.2.497</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2000-06, Vol.123 (2), p.497-508 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59018 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accumulation Acetate-CoA Ligase - chemistry Acetate-CoA Ligase - genetics Acetate-CoA Ligase - metabolism Acetyl-CoA synthase Agronomy. Soil science and plant productions Amino Acid Sequence Arabidopsis Arabidopsis - embryology Arabidopsis - enzymology Biochemical Processes and Macromolecular Structures Biological and medical sciences Biosynthesis Chloroplasts Cloning, Molecular Complementary DNA Dehydrogenase Economic plant physiology Embryos Enzymes Fatty acids Fatty Acids - biosynthesis Fundamental and applied biological sciences. Psychology In Situ Hybridization Lipids Messenger RNA Metabolism Metabolism. Physicochemical requirements Molecular Sequence Data Nitrogen metabolism and other ones (excepting carbon metabolism) Nutrition. Photosynthesis. Respiration. Metabolism Plant physiology and development Plants Plastids Plastids - enzymology Pyruvate Dehydrogenase Complex - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism Seeds Seeds - enzymology Seeds - growth & development Sequence Homology, Amino Acid Yeasts |
title | The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Pyruvate%20Dehydrogenase%20and%20Acetyl-Coenzyme%20A%20Synthetase%20in%20Fatty%20Acid%20Synthesis%20in%20Developing%20Arabidopsis%20Seeds&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Jinshan%20Ke&rft.date=2000-06-01&rft.volume=123&rft.issue=2&rft.spage=497&rft.epage=508&rft.pages=497-508&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.123.2.497&rft_dat=%3Cjstor_pubme%3E4279280%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218613371&rft_id=info:pmid/10859180&rft_jstor_id=4279280&rfr_iscdi=true |