The anaplerotic node is essential for the intracellular survival of Mycobacterium tuberculosis

Enzymes at the phosphoenolpyruvate (PEP)–pyruvate–oxaloacetate or anaplerotic (ANA) node control the metabolic flux to glycolysis, gluconeogenesis, and anaplerosis. Here we used genetic, biochemical, and 13C isotopomer analysis to characterize the role of the enzymes at the ANA node in intracellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2018-04, Vol.293 (15), p.5695-5704
Hauptverfasser: Basu, Piyali, Sandhu, Noor, Bhatt, Apoorva, Singh, Albel, Balhana, Ricardo, Gobe, Irene, Crowhurst, Nicola A., Mendum, Tom A., Gao, Liang, Ward, Jane L., Beale, Michael H., McFadden, Johnjoe, Beste, Dany J.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5704
container_issue 15
container_start_page 5695
container_title The Journal of biological chemistry
container_volume 293
creator Basu, Piyali
Sandhu, Noor
Bhatt, Apoorva
Singh, Albel
Balhana, Ricardo
Gobe, Irene
Crowhurst, Nicola A.
Mendum, Tom A.
Gao, Liang
Ward, Jane L.
Beale, Michael H.
McFadden, Johnjoe
Beste, Dany J.V.
description Enzymes at the phosphoenolpyruvate (PEP)–pyruvate–oxaloacetate or anaplerotic (ANA) node control the metabolic flux to glycolysis, gluconeogenesis, and anaplerosis. Here we used genetic, biochemical, and 13C isotopomer analysis to characterize the role of the enzymes at the ANA node in intracellular survival of the world’s most successful bacterial pathogen, Mycobacterium tuberculosis (Mtb). We show that each of the four ANA enzymes, pyruvate carboxylase (PCA), PEP carboxykinase (PCK), malic enzyme (MEZ), and pyruvate phosphate dikinase (PPDK), performs a unique and essential metabolic function during the intracellular survival of Mtb. We show that in addition to PCK, intracellular Mtb requires PPDK as an alternative gateway into gluconeogenesis. Propionate and cholesterol detoxification was also identified as an essential function of PPDK revealing an unexpected role for the ANA node in the metabolism of these physiologically important intracellular substrates and highlighting this enzyme as a tuberculosis (TB)-specific drug target. We show that anaplerotic fixation of CO2 through the ANA node is essential for intracellular survival of Mtb and that Mtb possesses three enzymes (PCA, PCK, and MEZ) capable of fulfilling this function. In addition to providing a back-up role in anaplerosis we show that MEZ also has a role in lipid biosynthesis. MEZ knockout strains have an altered cell wall and were deficient in the initial entry into macrophages. This work reveals that the ANA node is a focal point for controlling the intracellular replication of Mtb, which goes beyond canonical gluconeogenesis and represents a promising target for designing novel anti-TB drugs.
doi_str_mv 10.1074/jbc.RA118.001839
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5900758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820418630</els_id><sourcerecordid>2007979187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-f50149ba634708149502e81c3ecb71b754e3e171e3a0e1a862c470232c1743083</originalsourceid><addsrcrecordid>eNp1kU1PGzEQhi0EKoH23hPykcumnrU3XnNAilALSEFIKEg91fI6s8XRZh1sb6T8e5wmoPZQX8bSPPPOx0vIV2BjYFJ8WzZ2_DQFqMeMQc3VERkBq3nBK_h5TEaMlVCosqpPyVmMS5afUPCJnJZKyEqJyYj8mr8gNb1Zdxh8cpb2foHURYoxYp-c6WjrA02Zcn0KxmLXDZ0JNA5h4zY57Vv6sLW-MTZhcMOKpqHBYIfORxc_k5PWdBG_HOI5ef7xfX5zV8web-9vprPCCiFT0VYMhGrMhAvJ6vytWIk1WI62kdDISiBHkIDcMARTT0qbwZKXFqTgeeNzcr3XXQ_NChcWd7N2eh3cyoSt9sbpfzO9e9G__UZXijFZ7QQuDwLBvw4Yk165uFvW9OiHqMuMKamglhlle9QGH2PA9qMNML2zRWdb9B9b9N6WXHLx93gfBe8-ZOBqD2A-0sZh0NE67C0uXECb9MK7_6u_AYNMnls</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007979187</pqid></control><display><type>article</type><title>The anaplerotic node is essential for the intracellular survival of Mycobacterium tuberculosis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Basu, Piyali ; Sandhu, Noor ; Bhatt, Apoorva ; Singh, Albel ; Balhana, Ricardo ; Gobe, Irene ; Crowhurst, Nicola A. ; Mendum, Tom A. ; Gao, Liang ; Ward, Jane L. ; Beale, Michael H. ; McFadden, Johnjoe ; Beste, Dany J.V.</creator><creatorcontrib>Basu, Piyali ; Sandhu, Noor ; Bhatt, Apoorva ; Singh, Albel ; Balhana, Ricardo ; Gobe, Irene ; Crowhurst, Nicola A. ; Mendum, Tom A. ; Gao, Liang ; Ward, Jane L. ; Beale, Michael H. ; McFadden, Johnjoe ; Beste, Dany J.V.</creatorcontrib><description>Enzymes at the phosphoenolpyruvate (PEP)–pyruvate–oxaloacetate or anaplerotic (ANA) node control the metabolic flux to glycolysis, gluconeogenesis, and anaplerosis. Here we used genetic, biochemical, and 13C isotopomer analysis to characterize the role of the enzymes at the ANA node in intracellular survival of the world’s most successful bacterial pathogen, Mycobacterium tuberculosis (Mtb). We show that each of the four ANA enzymes, pyruvate carboxylase (PCA), PEP carboxykinase (PCK), malic enzyme (MEZ), and pyruvate phosphate dikinase (PPDK), performs a unique and essential metabolic function during the intracellular survival of Mtb. We show that in addition to PCK, intracellular Mtb requires PPDK as an alternative gateway into gluconeogenesis. Propionate and cholesterol detoxification was also identified as an essential function of PPDK revealing an unexpected role for the ANA node in the metabolism of these physiologically important intracellular substrates and highlighting this enzyme as a tuberculosis (TB)-specific drug target. We show that anaplerotic fixation of CO2 through the ANA node is essential for intracellular survival of Mtb and that Mtb possesses three enzymes (PCA, PCK, and MEZ) capable of fulfilling this function. In addition to providing a back-up role in anaplerosis we show that MEZ also has a role in lipid biosynthesis. MEZ knockout strains have an altered cell wall and were deficient in the initial entry into macrophages. This work reveals that the ANA node is a focal point for controlling the intracellular replication of Mtb, which goes beyond canonical gluconeogenesis and represents a promising target for designing novel anti-TB drugs.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.001839</identifier><identifier>PMID: 29475946</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Proteins - biosynthesis ; Bacterial Proteins - genetics ; enzyme ; gluconeogenesis ; host-pathogen interaction ; Humans ; Macrophages - metabolism ; Macrophages - microbiology ; Macrophages - pathology ; Microbial metabolism ; microbial pathogenesis ; Microbial Viability ; Microbiology ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - metabolism ; Mycobacterium tuberculosis - pathogenicity ; THP-1 Cells ; tuberculosis</subject><ispartof>The Journal of biological chemistry, 2018-04, Vol.293 (15), p.5695-5704</ispartof><rights>2018 © 2018 Basu et al.</rights><rights>2018 Basu et al.</rights><rights>2018 Basu et al. 2018 Basu et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-f50149ba634708149502e81c3ecb71b754e3e171e3a0e1a862c470232c1743083</citedby><cites>FETCH-LOGICAL-c447t-f50149ba634708149502e81c3ecb71b754e3e171e3a0e1a862c470232c1743083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5900758/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5900758/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29475946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basu, Piyali</creatorcontrib><creatorcontrib>Sandhu, Noor</creatorcontrib><creatorcontrib>Bhatt, Apoorva</creatorcontrib><creatorcontrib>Singh, Albel</creatorcontrib><creatorcontrib>Balhana, Ricardo</creatorcontrib><creatorcontrib>Gobe, Irene</creatorcontrib><creatorcontrib>Crowhurst, Nicola A.</creatorcontrib><creatorcontrib>Mendum, Tom A.</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Ward, Jane L.</creatorcontrib><creatorcontrib>Beale, Michael H.</creatorcontrib><creatorcontrib>McFadden, Johnjoe</creatorcontrib><creatorcontrib>Beste, Dany J.V.</creatorcontrib><title>The anaplerotic node is essential for the intracellular survival of Mycobacterium tuberculosis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Enzymes at the phosphoenolpyruvate (PEP)–pyruvate–oxaloacetate or anaplerotic (ANA) node control the metabolic flux to glycolysis, gluconeogenesis, and anaplerosis. Here we used genetic, biochemical, and 13C isotopomer analysis to characterize the role of the enzymes at the ANA node in intracellular survival of the world’s most successful bacterial pathogen, Mycobacterium tuberculosis (Mtb). We show that each of the four ANA enzymes, pyruvate carboxylase (PCA), PEP carboxykinase (PCK), malic enzyme (MEZ), and pyruvate phosphate dikinase (PPDK), performs a unique and essential metabolic function during the intracellular survival of Mtb. We show that in addition to PCK, intracellular Mtb requires PPDK as an alternative gateway into gluconeogenesis. Propionate and cholesterol detoxification was also identified as an essential function of PPDK revealing an unexpected role for the ANA node in the metabolism of these physiologically important intracellular substrates and highlighting this enzyme as a tuberculosis (TB)-specific drug target. We show that anaplerotic fixation of CO2 through the ANA node is essential for intracellular survival of Mtb and that Mtb possesses three enzymes (PCA, PCK, and MEZ) capable of fulfilling this function. In addition to providing a back-up role in anaplerosis we show that MEZ also has a role in lipid biosynthesis. MEZ knockout strains have an altered cell wall and were deficient in the initial entry into macrophages. This work reveals that the ANA node is a focal point for controlling the intracellular replication of Mtb, which goes beyond canonical gluconeogenesis and represents a promising target for designing novel anti-TB drugs.</description><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - genetics</subject><subject>enzyme</subject><subject>gluconeogenesis</subject><subject>host-pathogen interaction</subject><subject>Humans</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Macrophages - pathology</subject><subject>Microbial metabolism</subject><subject>microbial pathogenesis</subject><subject>Microbial Viability</subject><subject>Microbiology</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>THP-1 Cells</subject><subject>tuberculosis</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1PGzEQhi0EKoH23hPykcumnrU3XnNAilALSEFIKEg91fI6s8XRZh1sb6T8e5wmoPZQX8bSPPPOx0vIV2BjYFJ8WzZ2_DQFqMeMQc3VERkBq3nBK_h5TEaMlVCosqpPyVmMS5afUPCJnJZKyEqJyYj8mr8gNb1Zdxh8cpb2foHURYoxYp-c6WjrA02Zcn0KxmLXDZ0JNA5h4zY57Vv6sLW-MTZhcMOKpqHBYIfORxc_k5PWdBG_HOI5ef7xfX5zV8web-9vprPCCiFT0VYMhGrMhAvJ6vytWIk1WI62kdDISiBHkIDcMARTT0qbwZKXFqTgeeNzcr3XXQ_NChcWd7N2eh3cyoSt9sbpfzO9e9G__UZXijFZ7QQuDwLBvw4Yk165uFvW9OiHqMuMKamglhlle9QGH2PA9qMNML2zRWdb9B9b9N6WXHLx93gfBe8-ZOBqD2A-0sZh0NE67C0uXECb9MK7_6u_AYNMnls</recordid><startdate>20180413</startdate><enddate>20180413</enddate><creator>Basu, Piyali</creator><creator>Sandhu, Noor</creator><creator>Bhatt, Apoorva</creator><creator>Singh, Albel</creator><creator>Balhana, Ricardo</creator><creator>Gobe, Irene</creator><creator>Crowhurst, Nicola A.</creator><creator>Mendum, Tom A.</creator><creator>Gao, Liang</creator><creator>Ward, Jane L.</creator><creator>Beale, Michael H.</creator><creator>McFadden, Johnjoe</creator><creator>Beste, Dany J.V.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180413</creationdate><title>The anaplerotic node is essential for the intracellular survival of Mycobacterium tuberculosis</title><author>Basu, Piyali ; Sandhu, Noor ; Bhatt, Apoorva ; Singh, Albel ; Balhana, Ricardo ; Gobe, Irene ; Crowhurst, Nicola A. ; Mendum, Tom A. ; Gao, Liang ; Ward, Jane L. ; Beale, Michael H. ; McFadden, Johnjoe ; Beste, Dany J.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-f50149ba634708149502e81c3ecb71b754e3e171e3a0e1a862c470232c1743083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - genetics</topic><topic>enzyme</topic><topic>gluconeogenesis</topic><topic>host-pathogen interaction</topic><topic>Humans</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Macrophages - pathology</topic><topic>Microbial metabolism</topic><topic>microbial pathogenesis</topic><topic>Microbial Viability</topic><topic>Microbiology</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>THP-1 Cells</topic><topic>tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basu, Piyali</creatorcontrib><creatorcontrib>Sandhu, Noor</creatorcontrib><creatorcontrib>Bhatt, Apoorva</creatorcontrib><creatorcontrib>Singh, Albel</creatorcontrib><creatorcontrib>Balhana, Ricardo</creatorcontrib><creatorcontrib>Gobe, Irene</creatorcontrib><creatorcontrib>Crowhurst, Nicola A.</creatorcontrib><creatorcontrib>Mendum, Tom A.</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Ward, Jane L.</creatorcontrib><creatorcontrib>Beale, Michael H.</creatorcontrib><creatorcontrib>McFadden, Johnjoe</creatorcontrib><creatorcontrib>Beste, Dany J.V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basu, Piyali</au><au>Sandhu, Noor</au><au>Bhatt, Apoorva</au><au>Singh, Albel</au><au>Balhana, Ricardo</au><au>Gobe, Irene</au><au>Crowhurst, Nicola A.</au><au>Mendum, Tom A.</au><au>Gao, Liang</au><au>Ward, Jane L.</au><au>Beale, Michael H.</au><au>McFadden, Johnjoe</au><au>Beste, Dany J.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The anaplerotic node is essential for the intracellular survival of Mycobacterium tuberculosis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-04-13</date><risdate>2018</risdate><volume>293</volume><issue>15</issue><spage>5695</spage><epage>5704</epage><pages>5695-5704</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Enzymes at the phosphoenolpyruvate (PEP)–pyruvate–oxaloacetate or anaplerotic (ANA) node control the metabolic flux to glycolysis, gluconeogenesis, and anaplerosis. Here we used genetic, biochemical, and 13C isotopomer analysis to characterize the role of the enzymes at the ANA node in intracellular survival of the world’s most successful bacterial pathogen, Mycobacterium tuberculosis (Mtb). We show that each of the four ANA enzymes, pyruvate carboxylase (PCA), PEP carboxykinase (PCK), malic enzyme (MEZ), and pyruvate phosphate dikinase (PPDK), performs a unique and essential metabolic function during the intracellular survival of Mtb. We show that in addition to PCK, intracellular Mtb requires PPDK as an alternative gateway into gluconeogenesis. Propionate and cholesterol detoxification was also identified as an essential function of PPDK revealing an unexpected role for the ANA node in the metabolism of these physiologically important intracellular substrates and highlighting this enzyme as a tuberculosis (TB)-specific drug target. We show that anaplerotic fixation of CO2 through the ANA node is essential for intracellular survival of Mtb and that Mtb possesses three enzymes (PCA, PCK, and MEZ) capable of fulfilling this function. In addition to providing a back-up role in anaplerosis we show that MEZ also has a role in lipid biosynthesis. MEZ knockout strains have an altered cell wall and were deficient in the initial entry into macrophages. This work reveals that the ANA node is a focal point for controlling the intracellular replication of Mtb, which goes beyond canonical gluconeogenesis and represents a promising target for designing novel anti-TB drugs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29475946</pmid><doi>10.1074/jbc.RA118.001839</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2018-04, Vol.293 (15), p.5695-5704
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5900758
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Bacterial Proteins - biosynthesis
Bacterial Proteins - genetics
enzyme
gluconeogenesis
host-pathogen interaction
Humans
Macrophages - metabolism
Macrophages - microbiology
Macrophages - pathology
Microbial metabolism
microbial pathogenesis
Microbial Viability
Microbiology
Mycobacterium tuberculosis
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - metabolism
Mycobacterium tuberculosis - pathogenicity
THP-1 Cells
tuberculosis
title The anaplerotic node is essential for the intracellular survival of Mycobacterium tuberculosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20anaplerotic%20node%20is%20essential%20for%20the%20intracellular%20survival%20of%20Mycobacterium%20tuberculosis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Basu,%20Piyali&rft.date=2018-04-13&rft.volume=293&rft.issue=15&rft.spage=5695&rft.epage=5704&rft.pages=5695-5704&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.001839&rft_dat=%3Cproquest_pubme%3E2007979187%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007979187&rft_id=info:pmid/29475946&rft_els_id=S0021925820418630&rfr_iscdi=true