Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley
To investigate the regulation of HvNRT2, genes that encode high-affinity NO3 - transporters in barley (Hordeum vulgare) roots, seedlings were treated with 10 mM NO3 - in the presence or absence of amino acids (aspartate, asparagine, glutamate [Glu], and glutamine [Gln]), NH4 +, and/or inhibitors of...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2000-05, Vol.123 (1), p.307-318 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 1 |
container_start_page | 307 |
container_title | Plant physiology (Bethesda) |
container_volume | 123 |
creator | Joseph John Vidmar Degen Zhuo Siddiqi, M. Yaeesh Schjoerring, Jan K. Touraine, Bruno Anthony D. M. Glass |
description | To investigate the regulation of HvNRT2, genes that encode high-affinity NO3
- transporters in barley (Hordeum vulgare) roots, seedlings were treated with 10 mM NO3
- in the presence or absence of amino acids (aspartate, asparagine, glutamate [Glu], and glutamine [Gln]), NH4
+, and/or inhibitors of N assimilation. Although all amino acids decreased high-affinity ^{13}\text{NO}{}_{3}^{-}$ influx and HvNRT2 transcript abundance, there was substantial interconversion of administered amino acids, making it impossible to determine which amino acid(s) were responsible for the observed effects. To clarify the role of individual amino acids, plants were separately treated with tungstate, methionine sulfoximine, or azaserine (inhibitors of nitrate reductase, Gln synthetase, and Glu synthase, respectively). Tungstate increased the HvNRT2 transcript by 20% to 30% and decreased NO3
- influx by 50%, indicating that NO3
- itself does not regulate transcript abundance, but may exert post-transcriptional effects. Experiments with methionine sulfoximine suggested that NH4
+ may down-regulate HvNRT2 gene expression and high-affinity NO3
- influx by effects operating at the transcriptional and post-transcriptional levels. Azaserine decreased HvNRT2 transcript levels and NO3
- influx by 97% and 95%, respectively, while decreasing Glu and increasing Gln levels. This suggests that Gln (and not Glu) is responsible for down-regulating HvNRT2 expression, although it does not preclude a contributory effect of other amino acids. |
doi_str_mv | 10.1104/pp.123.1.307 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279259</jstor_id><sourcerecordid>4279259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-d7f5a7100c54a3e5f73eacfa91db31539b93739088ae30c594cd6f83054718e33</originalsourceid><addsrcrecordid>eNqFkcFvFCEUh4nR2G315tEYYhpPzgoDDJB4qY22TRo1TT0TloEtGxZGmDFu_OelzqZWE-MJwvsevB8fAM8wWmKM6JthWOKWLPGSIP4ALDAjbdMyKh6CBUJ1j4SQB-CwlA1CCBNMH4MDjATqWsoX4MeVXU9Bjz5FmBw89-ub5sQ5H_24gx_9mPVo4XXWsQwpjzbDMxttgTr2_2AvogvTd7iaT9LaRvg5pVCgj_AqpbHcPvNO52B3T8Ajp0OxT_frEfjy4f316Xlz-ens4vTksjFMiLHpuWOaY4QMo5pY5jix2jgtcb8iNa5cScKJrDm1JRWS1PSdEwQxyrGwhByBt_O9w7Ta2t7YWEcNash-q_NOJe3Vn5Xob9Q6fVNMIkRr-6t9e05fJ1tGtfXF2BB0tGkqiuPqgbTivyDmjLVIygq-_AvcpCnH-geqxaLDhHddhV7PkMmplGzd3cAYqVvzahhUNa-wquYr_uJ-yHvwrLoCx3tAF6ODq06NL7850jH-K-3zGduUMeW7Mm25bJkkPwGnfMBn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218613766</pqid></control><display><type>article</type><title>Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Joseph John Vidmar ; Degen Zhuo ; Siddiqi, M. Yaeesh ; Schjoerring, Jan K. ; Touraine, Bruno ; Anthony D. M. Glass</creator><creatorcontrib>Joseph John Vidmar ; Degen Zhuo ; Siddiqi, M. Yaeesh ; Schjoerring, Jan K. ; Touraine, Bruno ; Anthony D. M. Glass</creatorcontrib><description>To investigate the regulation of HvNRT2, genes that encode high-affinity NO3
- transporters in barley (Hordeum vulgare) roots, seedlings were treated with 10 mM NO3
- in the presence or absence of amino acids (aspartate, asparagine, glutamate [Glu], and glutamine [Gln]), NH4
+, and/or inhibitors of N assimilation. Although all amino acids decreased high-affinity ^{13}\text{NO}{}_{3}^{-}$ influx and HvNRT2 transcript abundance, there was substantial interconversion of administered amino acids, making it impossible to determine which amino acid(s) were responsible for the observed effects. To clarify the role of individual amino acids, plants were separately treated with tungstate, methionine sulfoximine, or azaserine (inhibitors of nitrate reductase, Gln synthetase, and Glu synthase, respectively). Tungstate increased the HvNRT2 transcript by 20% to 30% and decreased NO3
- influx by 50%, indicating that NO3
- itself does not regulate transcript abundance, but may exert post-transcriptional effects. Experiments with methionine sulfoximine suggested that NH4
+ may down-regulate HvNRT2 gene expression and high-affinity NO3
- influx by effects operating at the transcriptional and post-transcriptional levels. Azaserine decreased HvNRT2 transcript levels and NO3
- influx by 97% and 95%, respectively, while decreasing Glu and increasing Gln levels. This suggests that Gln (and not Glu) is responsible for down-regulating HvNRT2 expression, although it does not preclude a contributory effect of other amino acids.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.123.1.307</identifier><identifier>PMID: 10806247</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Absorption. Translocation of ions and substances. Permeability ; Agronomy. Soil science and plant productions ; Amino acids ; Anion Transport Proteins ; asparagine ; aspartate ; azaserine ; Bacterial Proteins - genetics ; Barley ; Biological and medical sciences ; Carrier Proteins - genetics ; Down regulation ; Economic plant physiology ; Environmental Stress and Adaptation ; Fundamental and applied biological sciences. Psychology ; Gene expression regulation ; Gene Expression Regulation, Plant ; glutamate ; glutamate synthase ; glutamine ; glutamine synthase ; Hordeum - genetics ; Hordeum - metabolism ; Hordeum vulgare ; HvNRT2 gene ; methionine sulfoximine ; nitrate transporter ; Nitrate Transporters ; Nitrates ; Nitrogen - metabolism ; Nutrition. Photosynthesis. Respiration. Metabolism ; Plant physiology and development ; Plant roots ; Plant Roots - metabolism ; Plants ; RNA ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Roots ; Seedlings ; tungstate ; Tungstates ; Water and solutes. Absorption, translocation and permeability</subject><ispartof>Plant physiology (Bethesda), 2000-05, Vol.123 (1), p.307-318</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists May 2000</rights><rights>Copyright © 2000, American Society of Plant Physiologists 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-d7f5a7100c54a3e5f73eacfa91db31539b93739088ae30c594cd6f83054718e33</citedby><cites>FETCH-LOGICAL-c588t-d7f5a7100c54a3e5f73eacfa91db31539b93739088ae30c594cd6f83054718e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279259$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279259$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1365704$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10806247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joseph John Vidmar</creatorcontrib><creatorcontrib>Degen Zhuo</creatorcontrib><creatorcontrib>Siddiqi, M. Yaeesh</creatorcontrib><creatorcontrib>Schjoerring, Jan K.</creatorcontrib><creatorcontrib>Touraine, Bruno</creatorcontrib><creatorcontrib>Anthony D. M. Glass</creatorcontrib><title>Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>To investigate the regulation of HvNRT2, genes that encode high-affinity NO3
- transporters in barley (Hordeum vulgare) roots, seedlings were treated with 10 mM NO3
- in the presence or absence of amino acids (aspartate, asparagine, glutamate [Glu], and glutamine [Gln]), NH4
+, and/or inhibitors of N assimilation. Although all amino acids decreased high-affinity ^{13}\text{NO}{}_{3}^{-}$ influx and HvNRT2 transcript abundance, there was substantial interconversion of administered amino acids, making it impossible to determine which amino acid(s) were responsible for the observed effects. To clarify the role of individual amino acids, plants were separately treated with tungstate, methionine sulfoximine, or azaserine (inhibitors of nitrate reductase, Gln synthetase, and Glu synthase, respectively). Tungstate increased the HvNRT2 transcript by 20% to 30% and decreased NO3
- influx by 50%, indicating that NO3
- itself does not regulate transcript abundance, but may exert post-transcriptional effects. Experiments with methionine sulfoximine suggested that NH4
+ may down-regulate HvNRT2 gene expression and high-affinity NO3
- influx by effects operating at the transcriptional and post-transcriptional levels. Azaserine decreased HvNRT2 transcript levels and NO3
- influx by 97% and 95%, respectively, while decreasing Glu and increasing Gln levels. This suggests that Gln (and not Glu) is responsible for down-regulating HvNRT2 expression, although it does not preclude a contributory effect of other amino acids.</description><subject>Absorption. Translocation of ions and substances. Permeability</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Amino acids</subject><subject>Anion Transport Proteins</subject><subject>asparagine</subject><subject>aspartate</subject><subject>azaserine</subject><subject>Bacterial Proteins - genetics</subject><subject>Barley</subject><subject>Biological and medical sciences</subject><subject>Carrier Proteins - genetics</subject><subject>Down regulation</subject><subject>Economic plant physiology</subject><subject>Environmental Stress and Adaptation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>glutamate</subject><subject>glutamate synthase</subject><subject>glutamine</subject><subject>glutamine synthase</subject><subject>Hordeum - genetics</subject><subject>Hordeum - metabolism</subject><subject>Hordeum vulgare</subject><subject>HvNRT2 gene</subject><subject>methionine sulfoximine</subject><subject>nitrate transporter</subject><subject>Nitrate Transporters</subject><subject>Nitrates</subject><subject>Nitrogen - metabolism</subject><subject>Nutrition. Photosynthesis. Respiration. Metabolism</subject><subject>Plant physiology and development</subject><subject>Plant roots</subject><subject>Plant Roots - metabolism</subject><subject>Plants</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Roots</subject><subject>Seedlings</subject><subject>tungstate</subject><subject>Tungstates</subject><subject>Water and solutes. Absorption, translocation and permeability</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcFvFCEUh4nR2G315tEYYhpPzgoDDJB4qY22TRo1TT0TloEtGxZGmDFu_OelzqZWE-MJwvsevB8fAM8wWmKM6JthWOKWLPGSIP4ALDAjbdMyKh6CBUJ1j4SQB-CwlA1CCBNMH4MDjATqWsoX4MeVXU9Bjz5FmBw89-ub5sQ5H_24gx_9mPVo4XXWsQwpjzbDMxttgTr2_2AvogvTd7iaT9LaRvg5pVCgj_AqpbHcPvNO52B3T8Ajp0OxT_frEfjy4f316Xlz-ens4vTksjFMiLHpuWOaY4QMo5pY5jix2jgtcb8iNa5cScKJrDm1JRWS1PSdEwQxyrGwhByBt_O9w7Ta2t7YWEcNash-q_NOJe3Vn5Xob9Q6fVNMIkRr-6t9e05fJ1tGtfXF2BB0tGkqiuPqgbTivyDmjLVIygq-_AvcpCnH-geqxaLDhHddhV7PkMmplGzd3cAYqVvzahhUNa-wquYr_uJ-yHvwrLoCx3tAF6ODq06NL7850jH-K-3zGduUMeW7Mm25bJkkPwGnfMBn</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Joseph John Vidmar</creator><creator>Degen Zhuo</creator><creator>Siddiqi, M. Yaeesh</creator><creator>Schjoerring, Jan K.</creator><creator>Touraine, Bruno</creator><creator>Anthony D. M. Glass</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000501</creationdate><title>Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley</title><author>Joseph John Vidmar ; Degen Zhuo ; Siddiqi, M. Yaeesh ; Schjoerring, Jan K. ; Touraine, Bruno ; Anthony D. M. Glass</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-d7f5a7100c54a3e5f73eacfa91db31539b93739088ae30c594cd6f83054718e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Absorption. Translocation of ions and substances. Permeability</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Amino acids</topic><topic>Anion Transport Proteins</topic><topic>asparagine</topic><topic>aspartate</topic><topic>azaserine</topic><topic>Bacterial Proteins - genetics</topic><topic>Barley</topic><topic>Biological and medical sciences</topic><topic>Carrier Proteins - genetics</topic><topic>Down regulation</topic><topic>Economic plant physiology</topic><topic>Environmental Stress and Adaptation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>glutamate</topic><topic>glutamate synthase</topic><topic>glutamine</topic><topic>glutamine synthase</topic><topic>Hordeum - genetics</topic><topic>Hordeum - metabolism</topic><topic>Hordeum vulgare</topic><topic>HvNRT2 gene</topic><topic>methionine sulfoximine</topic><topic>nitrate transporter</topic><topic>Nitrate Transporters</topic><topic>Nitrates</topic><topic>Nitrogen - metabolism</topic><topic>Nutrition. Photosynthesis. Respiration. Metabolism</topic><topic>Plant physiology and development</topic><topic>Plant roots</topic><topic>Plant Roots - metabolism</topic><topic>Plants</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Roots</topic><topic>Seedlings</topic><topic>tungstate</topic><topic>Tungstates</topic><topic>Water and solutes. Absorption, translocation and permeability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph John Vidmar</creatorcontrib><creatorcontrib>Degen Zhuo</creatorcontrib><creatorcontrib>Siddiqi, M. Yaeesh</creatorcontrib><creatorcontrib>Schjoerring, Jan K.</creatorcontrib><creatorcontrib>Touraine, Bruno</creatorcontrib><creatorcontrib>Anthony D. M. Glass</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph John Vidmar</au><au>Degen Zhuo</au><au>Siddiqi, M. Yaeesh</au><au>Schjoerring, Jan K.</au><au>Touraine, Bruno</au><au>Anthony D. M. Glass</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2000-05-01</date><risdate>2000</risdate><volume>123</volume><issue>1</issue><spage>307</spage><epage>318</epage><pages>307-318</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>To investigate the regulation of HvNRT2, genes that encode high-affinity NO3
- transporters in barley (Hordeum vulgare) roots, seedlings were treated with 10 mM NO3
- in the presence or absence of amino acids (aspartate, asparagine, glutamate [Glu], and glutamine [Gln]), NH4
+, and/or inhibitors of N assimilation. Although all amino acids decreased high-affinity ^{13}\text{NO}{}_{3}^{-}$ influx and HvNRT2 transcript abundance, there was substantial interconversion of administered amino acids, making it impossible to determine which amino acid(s) were responsible for the observed effects. To clarify the role of individual amino acids, plants were separately treated with tungstate, methionine sulfoximine, or azaserine (inhibitors of nitrate reductase, Gln synthetase, and Glu synthase, respectively). Tungstate increased the HvNRT2 transcript by 20% to 30% and decreased NO3
- influx by 50%, indicating that NO3
- itself does not regulate transcript abundance, but may exert post-transcriptional effects. Experiments with methionine sulfoximine suggested that NH4
+ may down-regulate HvNRT2 gene expression and high-affinity NO3
- influx by effects operating at the transcriptional and post-transcriptional levels. Azaserine decreased HvNRT2 transcript levels and NO3
- influx by 97% and 95%, respectively, while decreasing Glu and increasing Gln levels. This suggests that Gln (and not Glu) is responsible for down-regulating HvNRT2 expression, although it does not preclude a contributory effect of other amino acids.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>10806247</pmid><doi>10.1104/pp.123.1.307</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2000-05, Vol.123 (1), p.307-318 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59004 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Absorption. Translocation of ions and substances. Permeability Agronomy. Soil science and plant productions Amino acids Anion Transport Proteins asparagine aspartate azaserine Bacterial Proteins - genetics Barley Biological and medical sciences Carrier Proteins - genetics Down regulation Economic plant physiology Environmental Stress and Adaptation Fundamental and applied biological sciences. Psychology Gene expression regulation Gene Expression Regulation, Plant glutamate glutamate synthase glutamine glutamine synthase Hordeum - genetics Hordeum - metabolism Hordeum vulgare HvNRT2 gene methionine sulfoximine nitrate transporter Nitrate Transporters Nitrates Nitrogen - metabolism Nutrition. Photosynthesis. Respiration. Metabolism Plant physiology and development Plant roots Plant Roots - metabolism Plants RNA RNA, Messenger - genetics RNA, Messenger - metabolism Roots Seedlings tungstate Tungstates Water and solutes. Absorption, translocation and permeability |
title | Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20High-Affinity%20Nitrate%20Transporter%20Genes%20and%20High-Affinity%20Nitrate%20Influx%20by%20Nitrogen%20Pools%20in%20Roots%20of%20Barley&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Joseph%20John%20Vidmar&rft.date=2000-05-01&rft.volume=123&rft.issue=1&rft.spage=307&rft.epage=318&rft.pages=307-318&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.123.1.307&rft_dat=%3Cjstor_pubme%3E4279259%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218613766&rft_id=info:pmid/10806247&rft_jstor_id=4279259&rfr_iscdi=true |