Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley

To investigate the regulation of HvNRT2, genes that encode high-affinity NO3 - transporters in barley (Hordeum vulgare) roots, seedlings were treated with 10 mM NO3 - in the presence or absence of amino acids (aspartate, asparagine, glutamate [Glu], and glutamine [Gln]), NH4 +, and/or inhibitors of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2000-05, Vol.123 (1), p.307-318
Hauptverfasser: Joseph John Vidmar, Degen Zhuo, Siddiqi, M. Yaeesh, Schjoerring, Jan K., Touraine, Bruno, Anthony D. M. Glass
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 1
container_start_page 307
container_title Plant physiology (Bethesda)
container_volume 123
creator Joseph John Vidmar
Degen Zhuo
Siddiqi, M. Yaeesh
Schjoerring, Jan K.
Touraine, Bruno
Anthony D. M. Glass
description To investigate the regulation of HvNRT2, genes that encode high-affinity NO3 - transporters in barley (Hordeum vulgare) roots, seedlings were treated with 10 mM NO3 - in the presence or absence of amino acids (aspartate, asparagine, glutamate [Glu], and glutamine [Gln]), NH4 +, and/or inhibitors of N assimilation. Although all amino acids decreased high-affinity ^{13}\text{NO}{}_{3}^{-}$ influx and HvNRT2 transcript abundance, there was substantial interconversion of administered amino acids, making it impossible to determine which amino acid(s) were responsible for the observed effects. To clarify the role of individual amino acids, plants were separately treated with tungstate, methionine sulfoximine, or azaserine (inhibitors of nitrate reductase, Gln synthetase, and Glu synthase, respectively). Tungstate increased the HvNRT2 transcript by 20% to 30% and decreased NO3 - influx by 50%, indicating that NO3 - itself does not regulate transcript abundance, but may exert post-transcriptional effects. Experiments with methionine sulfoximine suggested that NH4 + may down-regulate HvNRT2 gene expression and high-affinity NO3 - influx by effects operating at the transcriptional and post-transcriptional levels. Azaserine decreased HvNRT2 transcript levels and NO3 - influx by 97% and 95%, respectively, while decreasing Glu and increasing Gln levels. This suggests that Gln (and not Glu) is responsible for down-regulating HvNRT2 expression, although it does not preclude a contributory effect of other amino acids.
doi_str_mv 10.1104/pp.123.1.307
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279259</jstor_id><sourcerecordid>4279259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-d7f5a7100c54a3e5f73eacfa91db31539b93739088ae30c594cd6f83054718e33</originalsourceid><addsrcrecordid>eNqFkcFvFCEUh4nR2G315tEYYhpPzgoDDJB4qY22TRo1TT0TloEtGxZGmDFu_OelzqZWE-MJwvsevB8fAM8wWmKM6JthWOKWLPGSIP4ALDAjbdMyKh6CBUJ1j4SQB-CwlA1CCBNMH4MDjATqWsoX4MeVXU9Bjz5FmBw89-ub5sQ5H_24gx_9mPVo4XXWsQwpjzbDMxttgTr2_2AvogvTd7iaT9LaRvg5pVCgj_AqpbHcPvNO52B3T8Ajp0OxT_frEfjy4f316Xlz-ens4vTksjFMiLHpuWOaY4QMo5pY5jix2jgtcb8iNa5cScKJrDm1JRWS1PSdEwQxyrGwhByBt_O9w7Ta2t7YWEcNash-q_NOJe3Vn5Xob9Q6fVNMIkRr-6t9e05fJ1tGtfXF2BB0tGkqiuPqgbTivyDmjLVIygq-_AvcpCnH-geqxaLDhHddhV7PkMmplGzd3cAYqVvzahhUNa-wquYr_uJ-yHvwrLoCx3tAF6ODq06NL7850jH-K-3zGduUMeW7Mm25bJkkPwGnfMBn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218613766</pqid></control><display><type>article</type><title>Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Joseph John Vidmar ; Degen Zhuo ; Siddiqi, M. Yaeesh ; Schjoerring, Jan K. ; Touraine, Bruno ; Anthony D. M. Glass</creator><creatorcontrib>Joseph John Vidmar ; Degen Zhuo ; Siddiqi, M. Yaeesh ; Schjoerring, Jan K. ; Touraine, Bruno ; Anthony D. M. Glass</creatorcontrib><description>To investigate the regulation of HvNRT2, genes that encode high-affinity NO3 - transporters in barley (Hordeum vulgare) roots, seedlings were treated with 10 mM NO3 - in the presence or absence of amino acids (aspartate, asparagine, glutamate [Glu], and glutamine [Gln]), NH4 +, and/or inhibitors of N assimilation. Although all amino acids decreased high-affinity ^{13}\text{NO}{}_{3}^{-}$ influx and HvNRT2 transcript abundance, there was substantial interconversion of administered amino acids, making it impossible to determine which amino acid(s) were responsible for the observed effects. To clarify the role of individual amino acids, plants were separately treated with tungstate, methionine sulfoximine, or azaserine (inhibitors of nitrate reductase, Gln synthetase, and Glu synthase, respectively). Tungstate increased the HvNRT2 transcript by 20% to 30% and decreased NO3 - influx by 50%, indicating that NO3 - itself does not regulate transcript abundance, but may exert post-transcriptional effects. Experiments with methionine sulfoximine suggested that NH4 + may down-regulate HvNRT2 gene expression and high-affinity NO3 - influx by effects operating at the transcriptional and post-transcriptional levels. Azaserine decreased HvNRT2 transcript levels and NO3 - influx by 97% and 95%, respectively, while decreasing Glu and increasing Gln levels. This suggests that Gln (and not Glu) is responsible for down-regulating HvNRT2 expression, although it does not preclude a contributory effect of other amino acids.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.123.1.307</identifier><identifier>PMID: 10806247</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Absorption. Translocation of ions and substances. Permeability ; Agronomy. Soil science and plant productions ; Amino acids ; Anion Transport Proteins ; asparagine ; aspartate ; azaserine ; Bacterial Proteins - genetics ; Barley ; Biological and medical sciences ; Carrier Proteins - genetics ; Down regulation ; Economic plant physiology ; Environmental Stress and Adaptation ; Fundamental and applied biological sciences. Psychology ; Gene expression regulation ; Gene Expression Regulation, Plant ; glutamate ; glutamate synthase ; glutamine ; glutamine synthase ; Hordeum - genetics ; Hordeum - metabolism ; Hordeum vulgare ; HvNRT2 gene ; methionine sulfoximine ; nitrate transporter ; Nitrate Transporters ; Nitrates ; Nitrogen - metabolism ; Nutrition. Photosynthesis. Respiration. Metabolism ; Plant physiology and development ; Plant roots ; Plant Roots - metabolism ; Plants ; RNA ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Roots ; Seedlings ; tungstate ; Tungstates ; Water and solutes. Absorption, translocation and permeability</subject><ispartof>Plant physiology (Bethesda), 2000-05, Vol.123 (1), p.307-318</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists May 2000</rights><rights>Copyright © 2000, American Society of Plant Physiologists 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-d7f5a7100c54a3e5f73eacfa91db31539b93739088ae30c594cd6f83054718e33</citedby><cites>FETCH-LOGICAL-c588t-d7f5a7100c54a3e5f73eacfa91db31539b93739088ae30c594cd6f83054718e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279259$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279259$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1365704$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10806247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joseph John Vidmar</creatorcontrib><creatorcontrib>Degen Zhuo</creatorcontrib><creatorcontrib>Siddiqi, M. Yaeesh</creatorcontrib><creatorcontrib>Schjoerring, Jan K.</creatorcontrib><creatorcontrib>Touraine, Bruno</creatorcontrib><creatorcontrib>Anthony D. M. Glass</creatorcontrib><title>Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>To investigate the regulation of HvNRT2, genes that encode high-affinity NO3 - transporters in barley (Hordeum vulgare) roots, seedlings were treated with 10 mM NO3 - in the presence or absence of amino acids (aspartate, asparagine, glutamate [Glu], and glutamine [Gln]), NH4 +, and/or inhibitors of N assimilation. Although all amino acids decreased high-affinity ^{13}\text{NO}{}_{3}^{-}$ influx and HvNRT2 transcript abundance, there was substantial interconversion of administered amino acids, making it impossible to determine which amino acid(s) were responsible for the observed effects. To clarify the role of individual amino acids, plants were separately treated with tungstate, methionine sulfoximine, or azaserine (inhibitors of nitrate reductase, Gln synthetase, and Glu synthase, respectively). Tungstate increased the HvNRT2 transcript by 20% to 30% and decreased NO3 - influx by 50%, indicating that NO3 - itself does not regulate transcript abundance, but may exert post-transcriptional effects. Experiments with methionine sulfoximine suggested that NH4 + may down-regulate HvNRT2 gene expression and high-affinity NO3 - influx by effects operating at the transcriptional and post-transcriptional levels. Azaserine decreased HvNRT2 transcript levels and NO3 - influx by 97% and 95%, respectively, while decreasing Glu and increasing Gln levels. This suggests that Gln (and not Glu) is responsible for down-regulating HvNRT2 expression, although it does not preclude a contributory effect of other amino acids.</description><subject>Absorption. Translocation of ions and substances. Permeability</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Amino acids</subject><subject>Anion Transport Proteins</subject><subject>asparagine</subject><subject>aspartate</subject><subject>azaserine</subject><subject>Bacterial Proteins - genetics</subject><subject>Barley</subject><subject>Biological and medical sciences</subject><subject>Carrier Proteins - genetics</subject><subject>Down regulation</subject><subject>Economic plant physiology</subject><subject>Environmental Stress and Adaptation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>glutamate</subject><subject>glutamate synthase</subject><subject>glutamine</subject><subject>glutamine synthase</subject><subject>Hordeum - genetics</subject><subject>Hordeum - metabolism</subject><subject>Hordeum vulgare</subject><subject>HvNRT2 gene</subject><subject>methionine sulfoximine</subject><subject>nitrate transporter</subject><subject>Nitrate Transporters</subject><subject>Nitrates</subject><subject>Nitrogen - metabolism</subject><subject>Nutrition. Photosynthesis. Respiration. Metabolism</subject><subject>Plant physiology and development</subject><subject>Plant roots</subject><subject>Plant Roots - metabolism</subject><subject>Plants</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Roots</subject><subject>Seedlings</subject><subject>tungstate</subject><subject>Tungstates</subject><subject>Water and solutes. Absorption, translocation and permeability</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcFvFCEUh4nR2G315tEYYhpPzgoDDJB4qY22TRo1TT0TloEtGxZGmDFu_OelzqZWE-MJwvsevB8fAM8wWmKM6JthWOKWLPGSIP4ALDAjbdMyKh6CBUJ1j4SQB-CwlA1CCBNMH4MDjATqWsoX4MeVXU9Bjz5FmBw89-ub5sQ5H_24gx_9mPVo4XXWsQwpjzbDMxttgTr2_2AvogvTd7iaT9LaRvg5pVCgj_AqpbHcPvNO52B3T8Ajp0OxT_frEfjy4f316Xlz-ens4vTksjFMiLHpuWOaY4QMo5pY5jix2jgtcb8iNa5cScKJrDm1JRWS1PSdEwQxyrGwhByBt_O9w7Ta2t7YWEcNash-q_NOJe3Vn5Xob9Q6fVNMIkRr-6t9e05fJ1tGtfXF2BB0tGkqiuPqgbTivyDmjLVIygq-_AvcpCnH-geqxaLDhHddhV7PkMmplGzd3cAYqVvzahhUNa-wquYr_uJ-yHvwrLoCx3tAF6ODq06NL7850jH-K-3zGduUMeW7Mm25bJkkPwGnfMBn</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Joseph John Vidmar</creator><creator>Degen Zhuo</creator><creator>Siddiqi, M. Yaeesh</creator><creator>Schjoerring, Jan K.</creator><creator>Touraine, Bruno</creator><creator>Anthony D. M. Glass</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000501</creationdate><title>Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley</title><author>Joseph John Vidmar ; Degen Zhuo ; Siddiqi, M. Yaeesh ; Schjoerring, Jan K. ; Touraine, Bruno ; Anthony D. M. Glass</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-d7f5a7100c54a3e5f73eacfa91db31539b93739088ae30c594cd6f83054718e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Absorption. Translocation of ions and substances. Permeability</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Amino acids</topic><topic>Anion Transport Proteins</topic><topic>asparagine</topic><topic>aspartate</topic><topic>azaserine</topic><topic>Bacterial Proteins - genetics</topic><topic>Barley</topic><topic>Biological and medical sciences</topic><topic>Carrier Proteins - genetics</topic><topic>Down regulation</topic><topic>Economic plant physiology</topic><topic>Environmental Stress and Adaptation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>glutamate</topic><topic>glutamate synthase</topic><topic>glutamine</topic><topic>glutamine synthase</topic><topic>Hordeum - genetics</topic><topic>Hordeum - metabolism</topic><topic>Hordeum vulgare</topic><topic>HvNRT2 gene</topic><topic>methionine sulfoximine</topic><topic>nitrate transporter</topic><topic>Nitrate Transporters</topic><topic>Nitrates</topic><topic>Nitrogen - metabolism</topic><topic>Nutrition. Photosynthesis. Respiration. Metabolism</topic><topic>Plant physiology and development</topic><topic>Plant roots</topic><topic>Plant Roots - metabolism</topic><topic>Plants</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Roots</topic><topic>Seedlings</topic><topic>tungstate</topic><topic>Tungstates</topic><topic>Water and solutes. Absorption, translocation and permeability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph John Vidmar</creatorcontrib><creatorcontrib>Degen Zhuo</creatorcontrib><creatorcontrib>Siddiqi, M. Yaeesh</creatorcontrib><creatorcontrib>Schjoerring, Jan K.</creatorcontrib><creatorcontrib>Touraine, Bruno</creatorcontrib><creatorcontrib>Anthony D. M. Glass</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph John Vidmar</au><au>Degen Zhuo</au><au>Siddiqi, M. Yaeesh</au><au>Schjoerring, Jan K.</au><au>Touraine, Bruno</au><au>Anthony D. M. Glass</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2000-05-01</date><risdate>2000</risdate><volume>123</volume><issue>1</issue><spage>307</spage><epage>318</epage><pages>307-318</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>To investigate the regulation of HvNRT2, genes that encode high-affinity NO3 - transporters in barley (Hordeum vulgare) roots, seedlings were treated with 10 mM NO3 - in the presence or absence of amino acids (aspartate, asparagine, glutamate [Glu], and glutamine [Gln]), NH4 +, and/or inhibitors of N assimilation. Although all amino acids decreased high-affinity ^{13}\text{NO}{}_{3}^{-}$ influx and HvNRT2 transcript abundance, there was substantial interconversion of administered amino acids, making it impossible to determine which amino acid(s) were responsible for the observed effects. To clarify the role of individual amino acids, plants were separately treated with tungstate, methionine sulfoximine, or azaserine (inhibitors of nitrate reductase, Gln synthetase, and Glu synthase, respectively). Tungstate increased the HvNRT2 transcript by 20% to 30% and decreased NO3 - influx by 50%, indicating that NO3 - itself does not regulate transcript abundance, but may exert post-transcriptional effects. Experiments with methionine sulfoximine suggested that NH4 + may down-regulate HvNRT2 gene expression and high-affinity NO3 - influx by effects operating at the transcriptional and post-transcriptional levels. Azaserine decreased HvNRT2 transcript levels and NO3 - influx by 97% and 95%, respectively, while decreasing Glu and increasing Gln levels. This suggests that Gln (and not Glu) is responsible for down-regulating HvNRT2 expression, although it does not preclude a contributory effect of other amino acids.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>10806247</pmid><doi>10.1104/pp.123.1.307</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2000-05, Vol.123 (1), p.307-318
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59004
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Absorption. Translocation of ions and substances. Permeability
Agronomy. Soil science and plant productions
Amino acids
Anion Transport Proteins
asparagine
aspartate
azaserine
Bacterial Proteins - genetics
Barley
Biological and medical sciences
Carrier Proteins - genetics
Down regulation
Economic plant physiology
Environmental Stress and Adaptation
Fundamental and applied biological sciences. Psychology
Gene expression regulation
Gene Expression Regulation, Plant
glutamate
glutamate synthase
glutamine
glutamine synthase
Hordeum - genetics
Hordeum - metabolism
Hordeum vulgare
HvNRT2 gene
methionine sulfoximine
nitrate transporter
Nitrate Transporters
Nitrates
Nitrogen - metabolism
Nutrition. Photosynthesis. Respiration. Metabolism
Plant physiology and development
Plant roots
Plant Roots - metabolism
Plants
RNA
RNA, Messenger - genetics
RNA, Messenger - metabolism
Roots
Seedlings
tungstate
Tungstates
Water and solutes. Absorption, translocation and permeability
title Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20High-Affinity%20Nitrate%20Transporter%20Genes%20and%20High-Affinity%20Nitrate%20Influx%20by%20Nitrogen%20Pools%20in%20Roots%20of%20Barley&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Joseph%20John%20Vidmar&rft.date=2000-05-01&rft.volume=123&rft.issue=1&rft.spage=307&rft.epage=318&rft.pages=307-318&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.123.1.307&rft_dat=%3Cjstor_pubme%3E4279259%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218613766&rft_id=info:pmid/10806247&rft_jstor_id=4279259&rfr_iscdi=true