Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis

Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-04, Vol.115 (15), p.E3588-E3596
Hauptverfasser: Wang, Peng, Liang, Fu-Cheng, Wittmann, Daniel, Siegel, Alex, Shan, Shu-ou, Grimm, Bernhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E3596
container_issue 15
container_start_page E3588
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Wang, Peng
Liang, Fu-Cheng
Wittmann, Daniel
Siegel, Alex
Shan, Shu-ou
Grimm, Bernhard
description Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.
doi_str_mv 10.1073/pnas.1719645115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5899456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508525</jstor_id><sourcerecordid>26508525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-619de397aca1c3e2ef87ac01bc83fa3d8aaccb8e9e6309c3e7633836fcfc942e3</originalsourceid><addsrcrecordid>eNpd0c9rFDEUB_Agil2rZ09KwIsHp00myUxyEcriLygqVc8hm32zmyWTjElGHP96U7a2KgRe4H3yeOGL0FNKzijp2fkUTD6jPVUdF5SKe2hFiaJNxxW5j1aEtH0jectP0KOcD4QQJSR5iE7aWmkryQr9XO99THHyJhf85eozZ9jYkrGpB9u9mSDFAHiICe_8XMy4-KZcfbzACbazLSbDK1z2gJMp0Hg3uuLCDkP4tYyAXcAFSjLTklL0gDcu5iVUnl1-jB4Mxmd4clNP0be3b76u3zeXn959WF9cNpZzVpqOqi0w1RtrqGXQwiDrndCNlWwwbCuNsXYjQUHHiKqi7xiTrBvsYBVvgZ2i18e507wZYWsh1IW8npIbTVp0NE7_2wlur3fxhxZSKS66OuDlzYAUv8-Qix5dtuC9CRDnrFtCFeFVikpf_EcPcU6hfk-3tDJJaNdXdX5UNsWcEwy3y1Cir1PV16nqu1Tri-d__-HW_4mxgmdHcMglprt-J4gUrWC_AWARqus</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101980167</pqid></control><display><type>article</type><title>Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Peng ; Liang, Fu-Cheng ; Wittmann, Daniel ; Siegel, Alex ; Shan, Shu-ou ; Grimm, Bernhard</creator><creatorcontrib>Wang, Peng ; Liang, Fu-Cheng ; Wittmann, Daniel ; Siegel, Alex ; Shan, Shu-ou ; Grimm, Bernhard</creatorcontrib><description>Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1719645115</identifier><identifier>PMID: 29581280</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agglomeration ; Aldehyde Oxidoreductases - metabolism ; Arabidopsis - metabolism ; Arabidopsis Proteins - metabolism ; Assembly ; Binding sites ; Biological Sciences ; Biosynthesis ; Chlorophyll ; Chlorophyll - metabolism ; Chloroplast Proteins - metabolism ; Chloroplasts ; Chloroplasts - metabolism ; Coding ; Constraining ; Enzymes ; Insertion ; Light-Harvesting Protein Complexes - metabolism ; Membranes ; Molecular Chaperones - metabolism ; PNAS Plus ; Protein Binding ; Protein Folding ; Protein Transport ; Proteins ; Reductase ; Ribonucleic acid ; Ribonucleotide reductase ; RNA ; Signal recognition particle ; Signal Recognition Particle - metabolism ; Stroma ; Substrates ; Synchronism ; Synchronization ; Tetrapyrroles - biosynthesis ; Thylakoid membranes ; tRNA</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (15), p.E3588-E3596</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Apr 10, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-619de397aca1c3e2ef87ac01bc83fa3d8aaccb8e9e6309c3e7633836fcfc942e3</citedby><cites>FETCH-LOGICAL-c443t-619de397aca1c3e2ef87ac01bc83fa3d8aaccb8e9e6309c3e7633836fcfc942e3</cites><orcidid>0000-0002-6526-1733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508525$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508525$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29581280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Liang, Fu-Cheng</creatorcontrib><creatorcontrib>Wittmann, Daniel</creatorcontrib><creatorcontrib>Siegel, Alex</creatorcontrib><creatorcontrib>Shan, Shu-ou</creatorcontrib><creatorcontrib>Grimm, Bernhard</creatorcontrib><title>Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.</description><subject>Agglomeration</subject><subject>Aldehyde Oxidoreductases - metabolism</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Assembly</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Chloroplast Proteins - metabolism</subject><subject>Chloroplasts</subject><subject>Chloroplasts - metabolism</subject><subject>Coding</subject><subject>Constraining</subject><subject>Enzymes</subject><subject>Insertion</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>Membranes</subject><subject>Molecular Chaperones - metabolism</subject><subject>PNAS Plus</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Reductase</subject><subject>Ribonucleic acid</subject><subject>Ribonucleotide reductase</subject><subject>RNA</subject><subject>Signal recognition particle</subject><subject>Signal Recognition Particle - metabolism</subject><subject>Stroma</subject><subject>Substrates</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Tetrapyrroles - biosynthesis</subject><subject>Thylakoid membranes</subject><subject>tRNA</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0c9rFDEUB_Agil2rZ09KwIsHp00myUxyEcriLygqVc8hm32zmyWTjElGHP96U7a2KgRe4H3yeOGL0FNKzijp2fkUTD6jPVUdF5SKe2hFiaJNxxW5j1aEtH0jectP0KOcD4QQJSR5iE7aWmkryQr9XO99THHyJhf85eozZ9jYkrGpB9u9mSDFAHiICe_8XMy4-KZcfbzACbazLSbDK1z2gJMp0Hg3uuLCDkP4tYyAXcAFSjLTklL0gDcu5iVUnl1-jB4Mxmd4clNP0be3b76u3zeXn959WF9cNpZzVpqOqi0w1RtrqGXQwiDrndCNlWwwbCuNsXYjQUHHiKqi7xiTrBvsYBVvgZ2i18e507wZYWsh1IW8npIbTVp0NE7_2wlur3fxhxZSKS66OuDlzYAUv8-Qix5dtuC9CRDnrFtCFeFVikpf_EcPcU6hfk-3tDJJaNdXdX5UNsWcEwy3y1Cir1PV16nqu1Tri-d__-HW_4mxgmdHcMglprt-J4gUrWC_AWARqus</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Wang, Peng</creator><creator>Liang, Fu-Cheng</creator><creator>Wittmann, Daniel</creator><creator>Siegel, Alex</creator><creator>Shan, Shu-ou</creator><creator>Grimm, Bernhard</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6526-1733</orcidid></search><sort><creationdate>20180410</creationdate><title>Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis</title><author>Wang, Peng ; Liang, Fu-Cheng ; Wittmann, Daniel ; Siegel, Alex ; Shan, Shu-ou ; Grimm, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-619de397aca1c3e2ef87ac01bc83fa3d8aaccb8e9e6309c3e7633836fcfc942e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agglomeration</topic><topic>Aldehyde Oxidoreductases - metabolism</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Assembly</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Chloroplast Proteins - metabolism</topic><topic>Chloroplasts</topic><topic>Chloroplasts - metabolism</topic><topic>Coding</topic><topic>Constraining</topic><topic>Enzymes</topic><topic>Insertion</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>Membranes</topic><topic>Molecular Chaperones - metabolism</topic><topic>PNAS Plus</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Reductase</topic><topic>Ribonucleic acid</topic><topic>Ribonucleotide reductase</topic><topic>RNA</topic><topic>Signal recognition particle</topic><topic>Signal Recognition Particle - metabolism</topic><topic>Stroma</topic><topic>Substrates</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Tetrapyrroles - biosynthesis</topic><topic>Thylakoid membranes</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Liang, Fu-Cheng</creatorcontrib><creatorcontrib>Wittmann, Daniel</creatorcontrib><creatorcontrib>Siegel, Alex</creatorcontrib><creatorcontrib>Shan, Shu-ou</creatorcontrib><creatorcontrib>Grimm, Bernhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Liang, Fu-Cheng</au><au>Wittmann, Daniel</au><au>Siegel, Alex</au><au>Shan, Shu-ou</au><au>Grimm, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>115</volume><issue>15</issue><spage>E3588</spage><epage>E3596</epage><pages>E3588-E3596</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29581280</pmid><doi>10.1073/pnas.1719645115</doi><orcidid>https://orcid.org/0000-0002-6526-1733</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (15), p.E3588-E3596
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5899456
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Agglomeration
Aldehyde Oxidoreductases - metabolism
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
Assembly
Binding sites
Biological Sciences
Biosynthesis
Chlorophyll
Chlorophyll - metabolism
Chloroplast Proteins - metabolism
Chloroplasts
Chloroplasts - metabolism
Coding
Constraining
Enzymes
Insertion
Light-Harvesting Protein Complexes - metabolism
Membranes
Molecular Chaperones - metabolism
PNAS Plus
Protein Binding
Protein Folding
Protein Transport
Proteins
Reductase
Ribonucleic acid
Ribonucleotide reductase
RNA
Signal recognition particle
Signal Recognition Particle - metabolism
Stroma
Substrates
Synchronism
Synchronization
Tetrapyrroles - biosynthesis
Thylakoid membranes
tRNA
title Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chloroplast%20SRP43%20acts%20as%20a%20chaperone%20for%20glutamyl-tRNA%20reductase,%20the%20rate-limiting%20enzyme%20in%20tetrapyrrole%20biosynthesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Peng&rft.date=2018-04-10&rft.volume=115&rft.issue=15&rft.spage=E3588&rft.epage=E3596&rft.pages=E3588-E3596&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1719645115&rft_dat=%3Cjstor_pubme%3E26508525%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101980167&rft_id=info:pmid/29581280&rft_jstor_id=26508525&rfr_iscdi=true