Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis
Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-04, Vol.115 (15), p.E3588-E3596 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E3596 |
---|---|
container_issue | 15 |
container_start_page | E3588 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Wang, Peng Liang, Fu-Cheng Wittmann, Daniel Siegel, Alex Shan, Shu-ou Grimm, Bernhard |
description | Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis. |
doi_str_mv | 10.1073/pnas.1719645115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5899456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508525</jstor_id><sourcerecordid>26508525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-619de397aca1c3e2ef87ac01bc83fa3d8aaccb8e9e6309c3e7633836fcfc942e3</originalsourceid><addsrcrecordid>eNpd0c9rFDEUB_Agil2rZ09KwIsHp00myUxyEcriLygqVc8hm32zmyWTjElGHP96U7a2KgRe4H3yeOGL0FNKzijp2fkUTD6jPVUdF5SKe2hFiaJNxxW5j1aEtH0jectP0KOcD4QQJSR5iE7aWmkryQr9XO99THHyJhf85eozZ9jYkrGpB9u9mSDFAHiICe_8XMy4-KZcfbzACbazLSbDK1z2gJMp0Hg3uuLCDkP4tYyAXcAFSjLTklL0gDcu5iVUnl1-jB4Mxmd4clNP0be3b76u3zeXn959WF9cNpZzVpqOqi0w1RtrqGXQwiDrndCNlWwwbCuNsXYjQUHHiKqi7xiTrBvsYBVvgZ2i18e507wZYWsh1IW8npIbTVp0NE7_2wlur3fxhxZSKS66OuDlzYAUv8-Qix5dtuC9CRDnrFtCFeFVikpf_EcPcU6hfk-3tDJJaNdXdX5UNsWcEwy3y1Cir1PV16nqu1Tri-d__-HW_4mxgmdHcMglprt-J4gUrWC_AWARqus</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101980167</pqid></control><display><type>article</type><title>Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Peng ; Liang, Fu-Cheng ; Wittmann, Daniel ; Siegel, Alex ; Shan, Shu-ou ; Grimm, Bernhard</creator><creatorcontrib>Wang, Peng ; Liang, Fu-Cheng ; Wittmann, Daniel ; Siegel, Alex ; Shan, Shu-ou ; Grimm, Bernhard</creatorcontrib><description>Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1719645115</identifier><identifier>PMID: 29581280</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agglomeration ; Aldehyde Oxidoreductases - metabolism ; Arabidopsis - metabolism ; Arabidopsis Proteins - metabolism ; Assembly ; Binding sites ; Biological Sciences ; Biosynthesis ; Chlorophyll ; Chlorophyll - metabolism ; Chloroplast Proteins - metabolism ; Chloroplasts ; Chloroplasts - metabolism ; Coding ; Constraining ; Enzymes ; Insertion ; Light-Harvesting Protein Complexes - metabolism ; Membranes ; Molecular Chaperones - metabolism ; PNAS Plus ; Protein Binding ; Protein Folding ; Protein Transport ; Proteins ; Reductase ; Ribonucleic acid ; Ribonucleotide reductase ; RNA ; Signal recognition particle ; Signal Recognition Particle - metabolism ; Stroma ; Substrates ; Synchronism ; Synchronization ; Tetrapyrroles - biosynthesis ; Thylakoid membranes ; tRNA</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (15), p.E3588-E3596</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Apr 10, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-619de397aca1c3e2ef87ac01bc83fa3d8aaccb8e9e6309c3e7633836fcfc942e3</citedby><cites>FETCH-LOGICAL-c443t-619de397aca1c3e2ef87ac01bc83fa3d8aaccb8e9e6309c3e7633836fcfc942e3</cites><orcidid>0000-0002-6526-1733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508525$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508525$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29581280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Liang, Fu-Cheng</creatorcontrib><creatorcontrib>Wittmann, Daniel</creatorcontrib><creatorcontrib>Siegel, Alex</creatorcontrib><creatorcontrib>Shan, Shu-ou</creatorcontrib><creatorcontrib>Grimm, Bernhard</creatorcontrib><title>Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.</description><subject>Agglomeration</subject><subject>Aldehyde Oxidoreductases - metabolism</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Assembly</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Chloroplast Proteins - metabolism</subject><subject>Chloroplasts</subject><subject>Chloroplasts - metabolism</subject><subject>Coding</subject><subject>Constraining</subject><subject>Enzymes</subject><subject>Insertion</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>Membranes</subject><subject>Molecular Chaperones - metabolism</subject><subject>PNAS Plus</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Reductase</subject><subject>Ribonucleic acid</subject><subject>Ribonucleotide reductase</subject><subject>RNA</subject><subject>Signal recognition particle</subject><subject>Signal Recognition Particle - metabolism</subject><subject>Stroma</subject><subject>Substrates</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Tetrapyrroles - biosynthesis</subject><subject>Thylakoid membranes</subject><subject>tRNA</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0c9rFDEUB_Agil2rZ09KwIsHp00myUxyEcriLygqVc8hm32zmyWTjElGHP96U7a2KgRe4H3yeOGL0FNKzijp2fkUTD6jPVUdF5SKe2hFiaJNxxW5j1aEtH0jectP0KOcD4QQJSR5iE7aWmkryQr9XO99THHyJhf85eozZ9jYkrGpB9u9mSDFAHiICe_8XMy4-KZcfbzACbazLSbDK1z2gJMp0Hg3uuLCDkP4tYyAXcAFSjLTklL0gDcu5iVUnl1-jB4Mxmd4clNP0be3b76u3zeXn959WF9cNpZzVpqOqi0w1RtrqGXQwiDrndCNlWwwbCuNsXYjQUHHiKqi7xiTrBvsYBVvgZ2i18e507wZYWsh1IW8npIbTVp0NE7_2wlur3fxhxZSKS66OuDlzYAUv8-Qix5dtuC9CRDnrFtCFeFVikpf_EcPcU6hfk-3tDJJaNdXdX5UNsWcEwy3y1Cir1PV16nqu1Tri-d__-HW_4mxgmdHcMglprt-J4gUrWC_AWARqus</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Wang, Peng</creator><creator>Liang, Fu-Cheng</creator><creator>Wittmann, Daniel</creator><creator>Siegel, Alex</creator><creator>Shan, Shu-ou</creator><creator>Grimm, Bernhard</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6526-1733</orcidid></search><sort><creationdate>20180410</creationdate><title>Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis</title><author>Wang, Peng ; Liang, Fu-Cheng ; Wittmann, Daniel ; Siegel, Alex ; Shan, Shu-ou ; Grimm, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-619de397aca1c3e2ef87ac01bc83fa3d8aaccb8e9e6309c3e7633836fcfc942e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agglomeration</topic><topic>Aldehyde Oxidoreductases - metabolism</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Assembly</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Chloroplast Proteins - metabolism</topic><topic>Chloroplasts</topic><topic>Chloroplasts - metabolism</topic><topic>Coding</topic><topic>Constraining</topic><topic>Enzymes</topic><topic>Insertion</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>Membranes</topic><topic>Molecular Chaperones - metabolism</topic><topic>PNAS Plus</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Reductase</topic><topic>Ribonucleic acid</topic><topic>Ribonucleotide reductase</topic><topic>RNA</topic><topic>Signal recognition particle</topic><topic>Signal Recognition Particle - metabolism</topic><topic>Stroma</topic><topic>Substrates</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Tetrapyrroles - biosynthesis</topic><topic>Thylakoid membranes</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Liang, Fu-Cheng</creatorcontrib><creatorcontrib>Wittmann, Daniel</creatorcontrib><creatorcontrib>Siegel, Alex</creatorcontrib><creatorcontrib>Shan, Shu-ou</creatorcontrib><creatorcontrib>Grimm, Bernhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Liang, Fu-Cheng</au><au>Wittmann, Daniel</au><au>Siegel, Alex</au><au>Shan, Shu-ou</au><au>Grimm, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>115</volume><issue>15</issue><spage>E3588</spage><epage>E3596</epage><pages>E3588-E3596</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29581280</pmid><doi>10.1073/pnas.1719645115</doi><orcidid>https://orcid.org/0000-0002-6526-1733</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (15), p.E3588-E3596 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5899456 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Agglomeration Aldehyde Oxidoreductases - metabolism Arabidopsis - metabolism Arabidopsis Proteins - metabolism Assembly Binding sites Biological Sciences Biosynthesis Chlorophyll Chlorophyll - metabolism Chloroplast Proteins - metabolism Chloroplasts Chloroplasts - metabolism Coding Constraining Enzymes Insertion Light-Harvesting Protein Complexes - metabolism Membranes Molecular Chaperones - metabolism PNAS Plus Protein Binding Protein Folding Protein Transport Proteins Reductase Ribonucleic acid Ribonucleotide reductase RNA Signal recognition particle Signal Recognition Particle - metabolism Stroma Substrates Synchronism Synchronization Tetrapyrroles - biosynthesis Thylakoid membranes tRNA |
title | Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chloroplast%20SRP43%20acts%20as%20a%20chaperone%20for%20glutamyl-tRNA%20reductase,%20the%20rate-limiting%20enzyme%20in%20tetrapyrrole%20biosynthesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Peng&rft.date=2018-04-10&rft.volume=115&rft.issue=15&rft.spage=E3588&rft.epage=E3596&rft.pages=E3588-E3596&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1719645115&rft_dat=%3Cjstor_pubme%3E26508525%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101980167&rft_id=info:pmid/29581280&rft_jstor_id=26508525&rfr_iscdi=true |