Comprehensive single-cell transcriptional profiling of a multicellular organism
To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis el...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2017-08, Vol.357 (6352), p.661-667 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 667 |
---|---|
container_issue | 6352 |
container_start_page | 661 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 357 |
creator | Cao, Junyue Packer, Jonathan S. Ramani, Vijay Cusanovich, Darren A. Huynh, Chau Daza, Riza Qiu, Xiaojie Lee, Choli Furlan, Scott N. Steemers, Frank J. Adey, Andrew Waterston, Robert H. Trapnell, Cole Shendure, Jay |
description | To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold “shotgun” cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type–specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms. |
doi_str_mv | 10.1126/science.aam8940 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5894354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26399645</jstor_id><sourcerecordid>26399645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-94d674477e9ff62dc6dd308a94b608bc1ae646e04b338dd7e0935a269b5ad81d3</originalsourceid><addsrcrecordid>eNpdkUFP3DAQhS3UCrbQM6eiSL30ErBjx_FcKqEVlEpIXMrZcmxn8cqxg50g9d_Xq91C6WkO75unmfcQOif4kpCGX2XtbND2UqlRAMNHaEUwtDU0mH5AK4wprwXu2hP0KectxkUDeoxOGiGIACpW6GEdxynZJxuye7FVdmHjba2t99WcVMg6uWl2MShfTSkOzhegikOlqnHxs9uBi1epimmjgsvjGfo4KJ_t58M8RY-3N7_Wd_X9w4-f6-v7WrfQzDUwwzvGus7CMPDGaG4MxUIB6zkWvSbKcsYtZj2lwpjOYqCtajj0rTKCGHqKvu99p6UfrdE2lHO9nJIbVfoto3LyvRLck9zEF9mWnGjLisG3g0GKz4vNsxxd3r2jgo1LlgQoZoIC5gX9-h-6jUsqkeyojgEwaLpCXe0pnWLOyQ6vxxAsd2XJQ1nyUFbZuPj3h1f-bzsF-LIHtnmO6U3nFICzlv4BJdaeYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974994927</pqid></control><display><type>article</type><title>Comprehensive single-cell transcriptional profiling of a multicellular organism</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Cao, Junyue ; Packer, Jonathan S. ; Ramani, Vijay ; Cusanovich, Darren A. ; Huynh, Chau ; Daza, Riza ; Qiu, Xiaojie ; Lee, Choli ; Furlan, Scott N. ; Steemers, Frank J. ; Adey, Andrew ; Waterston, Robert H. ; Trapnell, Cole ; Shendure, Jay</creator><creatorcontrib>Cao, Junyue ; Packer, Jonathan S. ; Ramani, Vijay ; Cusanovich, Darren A. ; Huynh, Chau ; Daza, Riza ; Qiu, Xiaojie ; Lee, Choli ; Furlan, Scott N. ; Steemers, Frank J. ; Adey, Andrew ; Waterston, Robert H. ; Trapnell, Cole ; Shendure, Jay</creatorcontrib><description>To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold “shotgun” cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type–specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aam8940</identifier><identifier>PMID: 28818938</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Biological materials ; Caenorhabditis elegans ; Caenorhabditis elegans - cytology ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - growth & development ; Cell Nucleus - genetics ; Chromatin ; Chromatin Immunoprecipitation ; Combinatorial analysis ; Gene sequencing ; HEK293 Cells ; Humans ; Immunoprecipitation ; Indexing ; Larva - genetics ; Mice ; Nematodes ; Neurons - metabolism ; NIH 3T3 Cells ; Nuclei (cytology) ; Ribonucleic acid ; RNA ; RNA - genetics ; Sequence Analysis, RNA ; Single-Cell Analysis - methods ; Transcription factors ; Transcription Factors - genetics ; Transcriptome</subject><ispartof>Science (American Association for the Advancement of Science), 2017-08, Vol.357 (6352), p.661-667</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-94d674477e9ff62dc6dd308a94b608bc1ae646e04b338dd7e0935a269b5ad81d3</citedby><cites>FETCH-LOGICAL-c592t-94d674477e9ff62dc6dd308a94b608bc1ae646e04b338dd7e0935a269b5ad81d3</cites><orcidid>0000-0002-8901-1835 ; 0000-0001-5956-5215 ; 0000-0001-7648-8717 ; 0000-0003-4097-489X ; 0000-0003-3345-5960 ; 0000-0001-6889-0095 ; 0000-0003-4025-0007 ; 0000-0002-8105-4347 ; 0000-0002-1516-1865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26399645$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26399645$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28818938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Junyue</creatorcontrib><creatorcontrib>Packer, Jonathan S.</creatorcontrib><creatorcontrib>Ramani, Vijay</creatorcontrib><creatorcontrib>Cusanovich, Darren A.</creatorcontrib><creatorcontrib>Huynh, Chau</creatorcontrib><creatorcontrib>Daza, Riza</creatorcontrib><creatorcontrib>Qiu, Xiaojie</creatorcontrib><creatorcontrib>Lee, Choli</creatorcontrib><creatorcontrib>Furlan, Scott N.</creatorcontrib><creatorcontrib>Steemers, Frank J.</creatorcontrib><creatorcontrib>Adey, Andrew</creatorcontrib><creatorcontrib>Waterston, Robert H.</creatorcontrib><creatorcontrib>Trapnell, Cole</creatorcontrib><creatorcontrib>Shendure, Jay</creatorcontrib><title>Comprehensive single-cell transcriptional profiling of a multicellular organism</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold “shotgun” cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type–specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.</description><subject>Animals</subject><subject>Biological materials</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - cytology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - growth & development</subject><subject>Cell Nucleus - genetics</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation</subject><subject>Combinatorial analysis</subject><subject>Gene sequencing</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Indexing</subject><subject>Larva - genetics</subject><subject>Mice</subject><subject>Nematodes</subject><subject>Neurons - metabolism</subject><subject>NIH 3T3 Cells</subject><subject>Nuclei (cytology)</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - genetics</subject><subject>Sequence Analysis, RNA</subject><subject>Single-Cell Analysis - methods</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcriptome</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFP3DAQhS3UCrbQM6eiSL30ErBjx_FcKqEVlEpIXMrZcmxn8cqxg50g9d_Xq91C6WkO75unmfcQOif4kpCGX2XtbND2UqlRAMNHaEUwtDU0mH5AK4wprwXu2hP0KectxkUDeoxOGiGIACpW6GEdxynZJxuye7FVdmHjba2t99WcVMg6uWl2MShfTSkOzhegikOlqnHxs9uBi1epimmjgsvjGfo4KJ_t58M8RY-3N7_Wd_X9w4-f6-v7WrfQzDUwwzvGus7CMPDGaG4MxUIB6zkWvSbKcsYtZj2lwpjOYqCtajj0rTKCGHqKvu99p6UfrdE2lHO9nJIbVfoto3LyvRLck9zEF9mWnGjLisG3g0GKz4vNsxxd3r2jgo1LlgQoZoIC5gX9-h-6jUsqkeyojgEwaLpCXe0pnWLOyQ6vxxAsd2XJQ1nyUFbZuPj3h1f-bzsF-LIHtnmO6U3nFICzlv4BJdaeYw</recordid><startdate>20170818</startdate><enddate>20170818</enddate><creator>Cao, Junyue</creator><creator>Packer, Jonathan S.</creator><creator>Ramani, Vijay</creator><creator>Cusanovich, Darren A.</creator><creator>Huynh, Chau</creator><creator>Daza, Riza</creator><creator>Qiu, Xiaojie</creator><creator>Lee, Choli</creator><creator>Furlan, Scott N.</creator><creator>Steemers, Frank J.</creator><creator>Adey, Andrew</creator><creator>Waterston, Robert H.</creator><creator>Trapnell, Cole</creator><creator>Shendure, Jay</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8901-1835</orcidid><orcidid>https://orcid.org/0000-0001-5956-5215</orcidid><orcidid>https://orcid.org/0000-0001-7648-8717</orcidid><orcidid>https://orcid.org/0000-0003-4097-489X</orcidid><orcidid>https://orcid.org/0000-0003-3345-5960</orcidid><orcidid>https://orcid.org/0000-0001-6889-0095</orcidid><orcidid>https://orcid.org/0000-0003-4025-0007</orcidid><orcidid>https://orcid.org/0000-0002-8105-4347</orcidid><orcidid>https://orcid.org/0000-0002-1516-1865</orcidid></search><sort><creationdate>20170818</creationdate><title>Comprehensive single-cell transcriptional profiling of a multicellular organism</title><author>Cao, Junyue ; Packer, Jonathan S. ; Ramani, Vijay ; Cusanovich, Darren A. ; Huynh, Chau ; Daza, Riza ; Qiu, Xiaojie ; Lee, Choli ; Furlan, Scott N. ; Steemers, Frank J. ; Adey, Andrew ; Waterston, Robert H. ; Trapnell, Cole ; Shendure, Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-94d674477e9ff62dc6dd308a94b608bc1ae646e04b338dd7e0935a269b5ad81d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biological materials</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - cytology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - growth & development</topic><topic>Cell Nucleus - genetics</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation</topic><topic>Combinatorial analysis</topic><topic>Gene sequencing</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Indexing</topic><topic>Larva - genetics</topic><topic>Mice</topic><topic>Nematodes</topic><topic>Neurons - metabolism</topic><topic>NIH 3T3 Cells</topic><topic>Nuclei (cytology)</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - genetics</topic><topic>Sequence Analysis, RNA</topic><topic>Single-Cell Analysis - methods</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Junyue</creatorcontrib><creatorcontrib>Packer, Jonathan S.</creatorcontrib><creatorcontrib>Ramani, Vijay</creatorcontrib><creatorcontrib>Cusanovich, Darren A.</creatorcontrib><creatorcontrib>Huynh, Chau</creatorcontrib><creatorcontrib>Daza, Riza</creatorcontrib><creatorcontrib>Qiu, Xiaojie</creatorcontrib><creatorcontrib>Lee, Choli</creatorcontrib><creatorcontrib>Furlan, Scott N.</creatorcontrib><creatorcontrib>Steemers, Frank J.</creatorcontrib><creatorcontrib>Adey, Andrew</creatorcontrib><creatorcontrib>Waterston, Robert H.</creatorcontrib><creatorcontrib>Trapnell, Cole</creatorcontrib><creatorcontrib>Shendure, Jay</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Junyue</au><au>Packer, Jonathan S.</au><au>Ramani, Vijay</au><au>Cusanovich, Darren A.</au><au>Huynh, Chau</au><au>Daza, Riza</au><au>Qiu, Xiaojie</au><au>Lee, Choli</au><au>Furlan, Scott N.</au><au>Steemers, Frank J.</au><au>Adey, Andrew</au><au>Waterston, Robert H.</au><au>Trapnell, Cole</au><au>Shendure, Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive single-cell transcriptional profiling of a multicellular organism</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-08-18</date><risdate>2017</risdate><volume>357</volume><issue>6352</issue><spage>661</spage><epage>667</epage><pages>661-667</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold “shotgun” cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type–specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28818938</pmid><doi>10.1126/science.aam8940</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8901-1835</orcidid><orcidid>https://orcid.org/0000-0001-5956-5215</orcidid><orcidid>https://orcid.org/0000-0001-7648-8717</orcidid><orcidid>https://orcid.org/0000-0003-4097-489X</orcidid><orcidid>https://orcid.org/0000-0003-3345-5960</orcidid><orcidid>https://orcid.org/0000-0001-6889-0095</orcidid><orcidid>https://orcid.org/0000-0003-4025-0007</orcidid><orcidid>https://orcid.org/0000-0002-8105-4347</orcidid><orcidid>https://orcid.org/0000-0002-1516-1865</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-08, Vol.357 (6352), p.661-667 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5894354 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | Animals Biological materials Caenorhabditis elegans Caenorhabditis elegans - cytology Caenorhabditis elegans - genetics Caenorhabditis elegans - growth & development Cell Nucleus - genetics Chromatin Chromatin Immunoprecipitation Combinatorial analysis Gene sequencing HEK293 Cells Humans Immunoprecipitation Indexing Larva - genetics Mice Nematodes Neurons - metabolism NIH 3T3 Cells Nuclei (cytology) Ribonucleic acid RNA RNA - genetics Sequence Analysis, RNA Single-Cell Analysis - methods Transcription factors Transcription Factors - genetics Transcriptome |
title | Comprehensive single-cell transcriptional profiling of a multicellular organism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20single-cell%20transcriptional%20profiling%20of%20a%20multicellular%20organism&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Cao,%20Junyue&rft.date=2017-08-18&rft.volume=357&rft.issue=6352&rft.spage=661&rft.epage=667&rft.pages=661-667&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aam8940&rft_dat=%3Cjstor_pubme%3E26399645%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974994927&rft_id=info:pmid/28818938&rft_jstor_id=26399645&rfr_iscdi=true |