Genetic Evidence for Sexuality in Cochliopodium (Amoebozoa)
Microbial eukaryotes, including amoeboids, display diverse and complex life cycles that may or may not involve sexual reproduction. A recent comprehensive gene inventory study concluded that the Amoebozoa are ancestrally sexual. However, the detection of sex genes in some lineages known for their po...
Gespeichert in:
Veröffentlicht in: | The Journal of heredity 2017-10, Vol.108 (7), p.769-779 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 779 |
---|---|
container_issue | 7 |
container_start_page | 769 |
container_title | The Journal of heredity |
container_volume | 108 |
creator | Wood, Fiona C Heidari, Alireza Tekle, Yonas I |
description | Microbial eukaryotes, including amoeboids, display diverse and complex life cycles that may or may not involve sexual reproduction. A recent comprehensive gene inventory study concluded that the Amoebozoa are ancestrally sexual. However, the detection of sex genes in some lineages known for their potentially sexual life cycle was very low. Particularly, the genus Cochliopodium, known to undergo a process of cell fusion, karyogamy, and subsequent fission previously described as parasexual, had no meiosis genes detected. This is likely due to low data representation, given the extensive nuclear fusion observed in the genus. In this study, we generate large amounts of transcriptome data for 2 species of Cochliopodium, known for their high frequency of cellular and nuclear fusion, in order to study the genetic basis of the complex life cycle observed in the genus. We inventory 60 sex-related genes, including 11 meiosis-specific genes, and 31 genes involved in fusion and karyogamy. We find a much higher detection of sex-related genes, including 5 meiosis-specific genes not previously detected in Cochliopodium, in this large transcriptome data. The expressed genes form a near-complete recombination machinery, indicating that Cochliopodium is an actively recombining sexual lineage. We also find 9 fusion-related genes in Cochliopodium, although no conserved fusion-specific genes were detected in the transcriptomes. Cochliopodium thus likely uses lineage specific genes for the fusion and depolyploidization processes. Our results demonstrate that Cochliopodium possess the genetic toolkit for recombination, while the mechanism involving fusion and genome reduction remains to be elucidated. |
doi_str_mv | 10.1093/jhered/esx078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5892394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952100753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-9e017f16b2487b01fd0573006fd8a572de046845f217d25e442a1072fbb7bd1d3</originalsourceid><addsrcrecordid>eNpVkEFLwzAUgIMobk6PXqXHeah7SZqmRRDGmFMYeFDPIW1eXUbbzKYdm7_eyebQ0zu8j-89PkKuKdxRSPloucAGzQj9BmRyQvo0ikUoOeenpA_AWEgF8B658H4JAFSkcE56LAUes1T2yf0Ma2xtHkzX1mCdY1C4JnjFTadL224DWwcTly9K61bO2K4KhuPKYea-nL69JGeFLj1eHeaAvD9O3yZP4fxl9jwZz8OcJ7INUwQqCxpnLEpkBrQwICQHiAuTaCGZQYjiJBIFo9IwgVHENAXJiiyTmaGGD8jD3rvqsgpNjnXb6FKtGlvpZquctur_prYL9eHWSiQp42m0EwwPgsZ9duhbVVmfY1nqGl3nFU0FowBS8B0a7tG8cd43WBzPUFA_wdU-uNoH3_E3f3870r-F-Tcxi34d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952100753</pqid></control><display><type>article</type><title>Genetic Evidence for Sexuality in Cochliopodium (Amoebozoa)</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wood, Fiona C ; Heidari, Alireza ; Tekle, Yonas I</creator><creatorcontrib>Wood, Fiona C ; Heidari, Alireza ; Tekle, Yonas I</creatorcontrib><description>Microbial eukaryotes, including amoeboids, display diverse and complex life cycles that may or may not involve sexual reproduction. A recent comprehensive gene inventory study concluded that the Amoebozoa are ancestrally sexual. However, the detection of sex genes in some lineages known for their potentially sexual life cycle was very low. Particularly, the genus Cochliopodium, known to undergo a process of cell fusion, karyogamy, and subsequent fission previously described as parasexual, had no meiosis genes detected. This is likely due to low data representation, given the extensive nuclear fusion observed in the genus. In this study, we generate large amounts of transcriptome data for 2 species of Cochliopodium, known for their high frequency of cellular and nuclear fusion, in order to study the genetic basis of the complex life cycle observed in the genus. We inventory 60 sex-related genes, including 11 meiosis-specific genes, and 31 genes involved in fusion and karyogamy. We find a much higher detection of sex-related genes, including 5 meiosis-specific genes not previously detected in Cochliopodium, in this large transcriptome data. The expressed genes form a near-complete recombination machinery, indicating that Cochliopodium is an actively recombining sexual lineage. We also find 9 fusion-related genes in Cochliopodium, although no conserved fusion-specific genes were detected in the transcriptomes. Cochliopodium thus likely uses lineage specific genes for the fusion and depolyploidization processes. Our results demonstrate that Cochliopodium possess the genetic toolkit for recombination, while the mechanism involving fusion and genome reduction remains to be elucidated.</description><identifier>ISSN: 0022-1503</identifier><identifier>EISSN: 1465-7333</identifier><identifier>DOI: 10.1093/jhered/esx078</identifier><identifier>PMID: 29036297</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Amoebozoa - genetics ; Amoebozoa - physiology ; Genes, Protozoan ; Meiosis - genetics ; Reproduction - genetics ; Symposium ; Transcriptome</subject><ispartof>The Journal of heredity, 2017-10, Vol.108 (7), p.769-779</ispartof><rights>The American Genetic Association 2017.</rights><rights>The American Genetic Association 2017. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-9e017f16b2487b01fd0573006fd8a572de046845f217d25e442a1072fbb7bd1d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29036297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wood, Fiona C</creatorcontrib><creatorcontrib>Heidari, Alireza</creatorcontrib><creatorcontrib>Tekle, Yonas I</creatorcontrib><title>Genetic Evidence for Sexuality in Cochliopodium (Amoebozoa)</title><title>The Journal of heredity</title><addtitle>J Hered</addtitle><description>Microbial eukaryotes, including amoeboids, display diverse and complex life cycles that may or may not involve sexual reproduction. A recent comprehensive gene inventory study concluded that the Amoebozoa are ancestrally sexual. However, the detection of sex genes in some lineages known for their potentially sexual life cycle was very low. Particularly, the genus Cochliopodium, known to undergo a process of cell fusion, karyogamy, and subsequent fission previously described as parasexual, had no meiosis genes detected. This is likely due to low data representation, given the extensive nuclear fusion observed in the genus. In this study, we generate large amounts of transcriptome data for 2 species of Cochliopodium, known for their high frequency of cellular and nuclear fusion, in order to study the genetic basis of the complex life cycle observed in the genus. We inventory 60 sex-related genes, including 11 meiosis-specific genes, and 31 genes involved in fusion and karyogamy. We find a much higher detection of sex-related genes, including 5 meiosis-specific genes not previously detected in Cochliopodium, in this large transcriptome data. The expressed genes form a near-complete recombination machinery, indicating that Cochliopodium is an actively recombining sexual lineage. We also find 9 fusion-related genes in Cochliopodium, although no conserved fusion-specific genes were detected in the transcriptomes. Cochliopodium thus likely uses lineage specific genes for the fusion and depolyploidization processes. Our results demonstrate that Cochliopodium possess the genetic toolkit for recombination, while the mechanism involving fusion and genome reduction remains to be elucidated.</description><subject>Amoebozoa - genetics</subject><subject>Amoebozoa - physiology</subject><subject>Genes, Protozoan</subject><subject>Meiosis - genetics</subject><subject>Reproduction - genetics</subject><subject>Symposium</subject><subject>Transcriptome</subject><issn>0022-1503</issn><issn>1465-7333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEFLwzAUgIMobk6PXqXHeah7SZqmRRDGmFMYeFDPIW1eXUbbzKYdm7_eyebQ0zu8j-89PkKuKdxRSPloucAGzQj9BmRyQvo0ikUoOeenpA_AWEgF8B658H4JAFSkcE56LAUes1T2yf0Ma2xtHkzX1mCdY1C4JnjFTadL224DWwcTly9K61bO2K4KhuPKYea-nL69JGeFLj1eHeaAvD9O3yZP4fxl9jwZz8OcJ7INUwQqCxpnLEpkBrQwICQHiAuTaCGZQYjiJBIFo9IwgVHENAXJiiyTmaGGD8jD3rvqsgpNjnXb6FKtGlvpZquctur_prYL9eHWSiQp42m0EwwPgsZ9duhbVVmfY1nqGl3nFU0FowBS8B0a7tG8cd43WBzPUFA_wdU-uNoH3_E3f3870r-F-Tcxi34d</recordid><startdate>20171030</startdate><enddate>20171030</enddate><creator>Wood, Fiona C</creator><creator>Heidari, Alireza</creator><creator>Tekle, Yonas I</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171030</creationdate><title>Genetic Evidence for Sexuality in Cochliopodium (Amoebozoa)</title><author>Wood, Fiona C ; Heidari, Alireza ; Tekle, Yonas I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-9e017f16b2487b01fd0573006fd8a572de046845f217d25e442a1072fbb7bd1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amoebozoa - genetics</topic><topic>Amoebozoa - physiology</topic><topic>Genes, Protozoan</topic><topic>Meiosis - genetics</topic><topic>Reproduction - genetics</topic><topic>Symposium</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wood, Fiona C</creatorcontrib><creatorcontrib>Heidari, Alireza</creatorcontrib><creatorcontrib>Tekle, Yonas I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wood, Fiona C</au><au>Heidari, Alireza</au><au>Tekle, Yonas I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Evidence for Sexuality in Cochliopodium (Amoebozoa)</atitle><jtitle>The Journal of heredity</jtitle><addtitle>J Hered</addtitle><date>2017-10-30</date><risdate>2017</risdate><volume>108</volume><issue>7</issue><spage>769</spage><epage>779</epage><pages>769-779</pages><issn>0022-1503</issn><eissn>1465-7333</eissn><abstract>Microbial eukaryotes, including amoeboids, display diverse and complex life cycles that may or may not involve sexual reproduction. A recent comprehensive gene inventory study concluded that the Amoebozoa are ancestrally sexual. However, the detection of sex genes in some lineages known for their potentially sexual life cycle was very low. Particularly, the genus Cochliopodium, known to undergo a process of cell fusion, karyogamy, and subsequent fission previously described as parasexual, had no meiosis genes detected. This is likely due to low data representation, given the extensive nuclear fusion observed in the genus. In this study, we generate large amounts of transcriptome data for 2 species of Cochliopodium, known for their high frequency of cellular and nuclear fusion, in order to study the genetic basis of the complex life cycle observed in the genus. We inventory 60 sex-related genes, including 11 meiosis-specific genes, and 31 genes involved in fusion and karyogamy. We find a much higher detection of sex-related genes, including 5 meiosis-specific genes not previously detected in Cochliopodium, in this large transcriptome data. The expressed genes form a near-complete recombination machinery, indicating that Cochliopodium is an actively recombining sexual lineage. We also find 9 fusion-related genes in Cochliopodium, although no conserved fusion-specific genes were detected in the transcriptomes. Cochliopodium thus likely uses lineage specific genes for the fusion and depolyploidization processes. Our results demonstrate that Cochliopodium possess the genetic toolkit for recombination, while the mechanism involving fusion and genome reduction remains to be elucidated.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>29036297</pmid><doi>10.1093/jhered/esx078</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1503 |
ispartof | The Journal of heredity, 2017-10, Vol.108 (7), p.769-779 |
issn | 0022-1503 1465-7333 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5892394 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Amoebozoa - genetics Amoebozoa - physiology Genes, Protozoan Meiosis - genetics Reproduction - genetics Symposium Transcriptome |
title | Genetic Evidence for Sexuality in Cochliopodium (Amoebozoa) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Evidence%20for%20Sexuality%20in%20Cochliopodium%20(Amoebozoa)&rft.jtitle=The%20Journal%20of%20heredity&rft.au=Wood,%20Fiona%20C&rft.date=2017-10-30&rft.volume=108&rft.issue=7&rft.spage=769&rft.epage=779&rft.pages=769-779&rft.issn=0022-1503&rft.eissn=1465-7333&rft_id=info:doi/10.1093/jhered/esx078&rft_dat=%3Cproquest_pubme%3E1952100753%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952100753&rft_id=info:pmid/29036297&rfr_iscdi=true |