Evolving artificial metalloenzymes via random mutagenesis
Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2018-03, Vol.10 (3), p.318-324 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 324 |
---|---|
container_issue | 3 |
container_start_page | 318 |
container_title | Nature chemistry |
container_volume | 10 |
creator | Yang, Hao Swartz, Alan M. Park, Hyun June Srivastava, Poonam Ellis-Guardiola, Ken Upp, David M. Lee, Gihoon Belsare, Ketaki Gu, Yifan Zhang, Chen Moellering, Raymond E. Lewis, Jared C. |
description | Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N–H, S–H and Si–H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.
Proteins have the potential to serve as powerful scaffolds that control the catalytic activity and selectivity of organometallic centres; however, new methods are needed to optimize artificial metalloenzymes. Now, an efficient approach for evolving the activity and selectivity of artificial metalloenzymes has been demonstrated using dirhodium cyclopropanases. This approach does not require structural or mechanistic data to guide mutagenesis. |
doi_str_mv | 10.1038/nchem.2927 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5891097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316782643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-e1acbe4cf2dfb8c5c38af4bfdf5d47b15175fec7968c121ba06c7dd9d70c10093</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotlY3_gAZcKdMzWMymWwEKfUBBTe6DplM0qbMZGoyLdRfb2prVRBX98L9OPdwDgDnCA4RJMWNUzPdDDHH7AD0EaM0zUjGD_c7gT1wEsIcwpwSlB-DHuZZjigmfcDHq7ZeWTdNpO-sscrKOml0J-u61e593eiQrKxMvHRV2yTNspNT7XSw4RQcGVkHfbabA_B6P34ZPaaT54en0d0kVRSyLtVIqlJnyuDKlIWiihTSZKWpDK0yViIaTRqtGM8LhTAqJcwVqypeMagQhJwMwO1Wd7EsG10p7Tova7HwtpF-LVppxe-LszMxbVeCFhxBzqLA5U7At29LHToxb5feRc8CxzhYgfOY0X8UxIQUlJMsUldbSvk2BK_N3geCYlOG-CxDbMqI8MVP53v0K_0IXG-BEE9uqv33zz_kPgDnEpYK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023385934</pqid></control><display><type>article</type><title>Evolving artificial metalloenzymes via random mutagenesis</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Yang, Hao ; Swartz, Alan M. ; Park, Hyun June ; Srivastava, Poonam ; Ellis-Guardiola, Ken ; Upp, David M. ; Lee, Gihoon ; Belsare, Ketaki ; Gu, Yifan ; Zhang, Chen ; Moellering, Raymond E. ; Lewis, Jared C.</creator><creatorcontrib>Yang, Hao ; Swartz, Alan M. ; Park, Hyun June ; Srivastava, Poonam ; Ellis-Guardiola, Ken ; Upp, David M. ; Lee, Gihoon ; Belsare, Ketaki ; Gu, Yifan ; Zhang, Chen ; Moellering, Raymond E. ; Lewis, Jared C.</creatorcontrib><description>Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N–H, S–H and Si–H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.
Proteins have the potential to serve as powerful scaffolds that control the catalytic activity and selectivity of organometallic centres; however, new methods are needed to optimize artificial metalloenzymes. Now, an efficient approach for evolving the activity and selectivity of artificial metalloenzymes has been demonstrated using dirhodium cyclopropanases. This approach does not require structural or mechanistic data to guide mutagenesis.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2927</identifier><identifier>PMID: 29461523</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/49/1141 ; 631/61/338/469 ; 639/638/77/603 ; Analytical Chemistry ; Biochemistry ; Catalysis ; Catalysts ; Chemistry ; Chemistry/Food Science ; Cofactors ; Combinatorial analysis ; Cyclopropane ; Enantiomers ; Inorganic Chemistry ; Mutagenesis ; Mutation ; Organic Chemistry ; Physical Chemistry ; Protein structure ; Proteins ; Random mutagenesis ; Selectivity ; Site-directed mutagenesis</subject><ispartof>Nature chemistry, 2018-03, Vol.10 (3), p.318-324</ispartof><rights>Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Mar 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-e1acbe4cf2dfb8c5c38af4bfdf5d47b15175fec7968c121ba06c7dd9d70c10093</citedby><cites>FETCH-LOGICAL-c507t-e1acbe4cf2dfb8c5c38af4bfdf5d47b15175fec7968c121ba06c7dd9d70c10093</cites><orcidid>0000-0002-2043-7838 ; 0000-0003-2800-8330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29461523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Swartz, Alan M.</creatorcontrib><creatorcontrib>Park, Hyun June</creatorcontrib><creatorcontrib>Srivastava, Poonam</creatorcontrib><creatorcontrib>Ellis-Guardiola, Ken</creatorcontrib><creatorcontrib>Upp, David M.</creatorcontrib><creatorcontrib>Lee, Gihoon</creatorcontrib><creatorcontrib>Belsare, Ketaki</creatorcontrib><creatorcontrib>Gu, Yifan</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Moellering, Raymond E.</creatorcontrib><creatorcontrib>Lewis, Jared C.</creatorcontrib><title>Evolving artificial metalloenzymes via random mutagenesis</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N–H, S–H and Si–H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.
Proteins have the potential to serve as powerful scaffolds that control the catalytic activity and selectivity of organometallic centres; however, new methods are needed to optimize artificial metalloenzymes. Now, an efficient approach for evolving the activity and selectivity of artificial metalloenzymes has been demonstrated using dirhodium cyclopropanases. This approach does not require structural or mechanistic data to guide mutagenesis.</description><subject>631/45/49/1141</subject><subject>631/61/338/469</subject><subject>639/638/77/603</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Cofactors</subject><subject>Combinatorial analysis</subject><subject>Cyclopropane</subject><subject>Enantiomers</subject><subject>Inorganic Chemistry</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Random mutagenesis</subject><subject>Selectivity</subject><subject>Site-directed mutagenesis</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMotlY3_gAZcKdMzWMymWwEKfUBBTe6DplM0qbMZGoyLdRfb2prVRBX98L9OPdwDgDnCA4RJMWNUzPdDDHH7AD0EaM0zUjGD_c7gT1wEsIcwpwSlB-DHuZZjigmfcDHq7ZeWTdNpO-sscrKOml0J-u61e593eiQrKxMvHRV2yTNspNT7XSw4RQcGVkHfbabA_B6P34ZPaaT54en0d0kVRSyLtVIqlJnyuDKlIWiihTSZKWpDK0yViIaTRqtGM8LhTAqJcwVqypeMagQhJwMwO1Wd7EsG10p7Tova7HwtpF-LVppxe-LszMxbVeCFhxBzqLA5U7At29LHToxb5feRc8CxzhYgfOY0X8UxIQUlJMsUldbSvk2BK_N3geCYlOG-CxDbMqI8MVP53v0K_0IXG-BEE9uqv33zz_kPgDnEpYK</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Yang, Hao</creator><creator>Swartz, Alan M.</creator><creator>Park, Hyun June</creator><creator>Srivastava, Poonam</creator><creator>Ellis-Guardiola, Ken</creator><creator>Upp, David M.</creator><creator>Lee, Gihoon</creator><creator>Belsare, Ketaki</creator><creator>Gu, Yifan</creator><creator>Zhang, Chen</creator><creator>Moellering, Raymond E.</creator><creator>Lewis, Jared C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2043-7838</orcidid><orcidid>https://orcid.org/0000-0003-2800-8330</orcidid></search><sort><creationdate>20180301</creationdate><title>Evolving artificial metalloenzymes via random mutagenesis</title><author>Yang, Hao ; Swartz, Alan M. ; Park, Hyun June ; Srivastava, Poonam ; Ellis-Guardiola, Ken ; Upp, David M. ; Lee, Gihoon ; Belsare, Ketaki ; Gu, Yifan ; Zhang, Chen ; Moellering, Raymond E. ; Lewis, Jared C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-e1acbe4cf2dfb8c5c38af4bfdf5d47b15175fec7968c121ba06c7dd9d70c10093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/45/49/1141</topic><topic>631/61/338/469</topic><topic>639/638/77/603</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Cofactors</topic><topic>Combinatorial analysis</topic><topic>Cyclopropane</topic><topic>Enantiomers</topic><topic>Inorganic Chemistry</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Random mutagenesis</topic><topic>Selectivity</topic><topic>Site-directed mutagenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Swartz, Alan M.</creatorcontrib><creatorcontrib>Park, Hyun June</creatorcontrib><creatorcontrib>Srivastava, Poonam</creatorcontrib><creatorcontrib>Ellis-Guardiola, Ken</creatorcontrib><creatorcontrib>Upp, David M.</creatorcontrib><creatorcontrib>Lee, Gihoon</creatorcontrib><creatorcontrib>Belsare, Ketaki</creatorcontrib><creatorcontrib>Gu, Yifan</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Moellering, Raymond E.</creatorcontrib><creatorcontrib>Lewis, Jared C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hao</au><au>Swartz, Alan M.</au><au>Park, Hyun June</au><au>Srivastava, Poonam</au><au>Ellis-Guardiola, Ken</au><au>Upp, David M.</au><au>Lee, Gihoon</au><au>Belsare, Ketaki</au><au>Gu, Yifan</au><au>Zhang, Chen</au><au>Moellering, Raymond E.</au><au>Lewis, Jared C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolving artificial metalloenzymes via random mutagenesis</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>10</volume><issue>3</issue><spage>318</spage><epage>324</epage><pages>318-324</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N–H, S–H and Si–H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.
Proteins have the potential to serve as powerful scaffolds that control the catalytic activity and selectivity of organometallic centres; however, new methods are needed to optimize artificial metalloenzymes. Now, an efficient approach for evolving the activity and selectivity of artificial metalloenzymes has been demonstrated using dirhodium cyclopropanases. This approach does not require structural or mechanistic data to guide mutagenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29461523</pmid><doi>10.1038/nchem.2927</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2043-7838</orcidid><orcidid>https://orcid.org/0000-0003-2800-8330</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2018-03, Vol.10 (3), p.318-324 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5891097 |
source | Nature; Alma/SFX Local Collection |
subjects | 631/45/49/1141 631/61/338/469 639/638/77/603 Analytical Chemistry Biochemistry Catalysis Catalysts Chemistry Chemistry/Food Science Cofactors Combinatorial analysis Cyclopropane Enantiomers Inorganic Chemistry Mutagenesis Mutation Organic Chemistry Physical Chemistry Protein structure Proteins Random mutagenesis Selectivity Site-directed mutagenesis |
title | Evolving artificial metalloenzymes via random mutagenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolving%20artificial%20metalloenzymes%20via%20random%20mutagenesis&rft.jtitle=Nature%20chemistry&rft.au=Yang,%20Hao&rft.date=2018-03-01&rft.volume=10&rft.issue=3&rft.spage=318&rft.epage=324&rft.pages=318-324&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2927&rft_dat=%3Cproquest_pubme%3E2316782643%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023385934&rft_id=info:pmid/29461523&rfr_iscdi=true |