Evolving artificial metalloenzymes via random mutagenesis

Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2018-03, Vol.10 (3), p.318-324
Hauptverfasser: Yang, Hao, Swartz, Alan M., Park, Hyun June, Srivastava, Poonam, Ellis-Guardiola, Ken, Upp, David M., Lee, Gihoon, Belsare, Ketaki, Gu, Yifan, Zhang, Chen, Moellering, Raymond E., Lewis, Jared C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue 3
container_start_page 318
container_title Nature chemistry
container_volume 10
creator Yang, Hao
Swartz, Alan M.
Park, Hyun June
Srivastava, Poonam
Ellis-Guardiola, Ken
Upp, David M.
Lee, Gihoon
Belsare, Ketaki
Gu, Yifan
Zhang, Chen
Moellering, Raymond E.
Lewis, Jared C.
description Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N–H, S–H and Si–H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others. Proteins have the potential to serve as powerful scaffolds that control the catalytic activity and selectivity of organometallic centres; however, new methods are needed to optimize artificial metalloenzymes. Now, an efficient approach for evolving the activity and selectivity of artificial metalloenzymes has been demonstrated using dirhodium cyclopropanases. This approach does not require structural or mechanistic data to guide mutagenesis.
doi_str_mv 10.1038/nchem.2927
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5891097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316782643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-e1acbe4cf2dfb8c5c38af4bfdf5d47b15175fec7968c121ba06c7dd9d70c10093</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotlY3_gAZcKdMzWMymWwEKfUBBTe6DplM0qbMZGoyLdRfb2prVRBX98L9OPdwDgDnCA4RJMWNUzPdDDHH7AD0EaM0zUjGD_c7gT1wEsIcwpwSlB-DHuZZjigmfcDHq7ZeWTdNpO-sscrKOml0J-u61e593eiQrKxMvHRV2yTNspNT7XSw4RQcGVkHfbabA_B6P34ZPaaT54en0d0kVRSyLtVIqlJnyuDKlIWiihTSZKWpDK0yViIaTRqtGM8LhTAqJcwVqypeMagQhJwMwO1Wd7EsG10p7Tova7HwtpF-LVppxe-LszMxbVeCFhxBzqLA5U7At29LHToxb5feRc8CxzhYgfOY0X8UxIQUlJMsUldbSvk2BK_N3geCYlOG-CxDbMqI8MVP53v0K_0IXG-BEE9uqv33zz_kPgDnEpYK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023385934</pqid></control><display><type>article</type><title>Evolving artificial metalloenzymes via random mutagenesis</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Yang, Hao ; Swartz, Alan M. ; Park, Hyun June ; Srivastava, Poonam ; Ellis-Guardiola, Ken ; Upp, David M. ; Lee, Gihoon ; Belsare, Ketaki ; Gu, Yifan ; Zhang, Chen ; Moellering, Raymond E. ; Lewis, Jared C.</creator><creatorcontrib>Yang, Hao ; Swartz, Alan M. ; Park, Hyun June ; Srivastava, Poonam ; Ellis-Guardiola, Ken ; Upp, David M. ; Lee, Gihoon ; Belsare, Ketaki ; Gu, Yifan ; Zhang, Chen ; Moellering, Raymond E. ; Lewis, Jared C.</creatorcontrib><description>Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N–H, S–H and Si–H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others. Proteins have the potential to serve as powerful scaffolds that control the catalytic activity and selectivity of organometallic centres; however, new methods are needed to optimize artificial metalloenzymes. Now, an efficient approach for evolving the activity and selectivity of artificial metalloenzymes has been demonstrated using dirhodium cyclopropanases. This approach does not require structural or mechanistic data to guide mutagenesis.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2927</identifier><identifier>PMID: 29461523</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/49/1141 ; 631/61/338/469 ; 639/638/77/603 ; Analytical Chemistry ; Biochemistry ; Catalysis ; Catalysts ; Chemistry ; Chemistry/Food Science ; Cofactors ; Combinatorial analysis ; Cyclopropane ; Enantiomers ; Inorganic Chemistry ; Mutagenesis ; Mutation ; Organic Chemistry ; Physical Chemistry ; Protein structure ; Proteins ; Random mutagenesis ; Selectivity ; Site-directed mutagenesis</subject><ispartof>Nature chemistry, 2018-03, Vol.10 (3), p.318-324</ispartof><rights>Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Mar 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-e1acbe4cf2dfb8c5c38af4bfdf5d47b15175fec7968c121ba06c7dd9d70c10093</citedby><cites>FETCH-LOGICAL-c507t-e1acbe4cf2dfb8c5c38af4bfdf5d47b15175fec7968c121ba06c7dd9d70c10093</cites><orcidid>0000-0002-2043-7838 ; 0000-0003-2800-8330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29461523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Swartz, Alan M.</creatorcontrib><creatorcontrib>Park, Hyun June</creatorcontrib><creatorcontrib>Srivastava, Poonam</creatorcontrib><creatorcontrib>Ellis-Guardiola, Ken</creatorcontrib><creatorcontrib>Upp, David M.</creatorcontrib><creatorcontrib>Lee, Gihoon</creatorcontrib><creatorcontrib>Belsare, Ketaki</creatorcontrib><creatorcontrib>Gu, Yifan</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Moellering, Raymond E.</creatorcontrib><creatorcontrib>Lewis, Jared C.</creatorcontrib><title>Evolving artificial metalloenzymes via random mutagenesis</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N–H, S–H and Si–H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others. Proteins have the potential to serve as powerful scaffolds that control the catalytic activity and selectivity of organometallic centres; however, new methods are needed to optimize artificial metalloenzymes. Now, an efficient approach for evolving the activity and selectivity of artificial metalloenzymes has been demonstrated using dirhodium cyclopropanases. This approach does not require structural or mechanistic data to guide mutagenesis.</description><subject>631/45/49/1141</subject><subject>631/61/338/469</subject><subject>639/638/77/603</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Cofactors</subject><subject>Combinatorial analysis</subject><subject>Cyclopropane</subject><subject>Enantiomers</subject><subject>Inorganic Chemistry</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Random mutagenesis</subject><subject>Selectivity</subject><subject>Site-directed mutagenesis</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMotlY3_gAZcKdMzWMymWwEKfUBBTe6DplM0qbMZGoyLdRfb2prVRBX98L9OPdwDgDnCA4RJMWNUzPdDDHH7AD0EaM0zUjGD_c7gT1wEsIcwpwSlB-DHuZZjigmfcDHq7ZeWTdNpO-sscrKOml0J-u61e593eiQrKxMvHRV2yTNspNT7XSw4RQcGVkHfbabA_B6P34ZPaaT54en0d0kVRSyLtVIqlJnyuDKlIWiihTSZKWpDK0yViIaTRqtGM8LhTAqJcwVqypeMagQhJwMwO1Wd7EsG10p7Tova7HwtpF-LVppxe-LszMxbVeCFhxBzqLA5U7At29LHToxb5feRc8CxzhYgfOY0X8UxIQUlJMsUldbSvk2BK_N3geCYlOG-CxDbMqI8MVP53v0K_0IXG-BEE9uqv33zz_kPgDnEpYK</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Yang, Hao</creator><creator>Swartz, Alan M.</creator><creator>Park, Hyun June</creator><creator>Srivastava, Poonam</creator><creator>Ellis-Guardiola, Ken</creator><creator>Upp, David M.</creator><creator>Lee, Gihoon</creator><creator>Belsare, Ketaki</creator><creator>Gu, Yifan</creator><creator>Zhang, Chen</creator><creator>Moellering, Raymond E.</creator><creator>Lewis, Jared C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2043-7838</orcidid><orcidid>https://orcid.org/0000-0003-2800-8330</orcidid></search><sort><creationdate>20180301</creationdate><title>Evolving artificial metalloenzymes via random mutagenesis</title><author>Yang, Hao ; Swartz, Alan M. ; Park, Hyun June ; Srivastava, Poonam ; Ellis-Guardiola, Ken ; Upp, David M. ; Lee, Gihoon ; Belsare, Ketaki ; Gu, Yifan ; Zhang, Chen ; Moellering, Raymond E. ; Lewis, Jared C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-e1acbe4cf2dfb8c5c38af4bfdf5d47b15175fec7968c121ba06c7dd9d70c10093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/45/49/1141</topic><topic>631/61/338/469</topic><topic>639/638/77/603</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Cofactors</topic><topic>Combinatorial analysis</topic><topic>Cyclopropane</topic><topic>Enantiomers</topic><topic>Inorganic Chemistry</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Random mutagenesis</topic><topic>Selectivity</topic><topic>Site-directed mutagenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Swartz, Alan M.</creatorcontrib><creatorcontrib>Park, Hyun June</creatorcontrib><creatorcontrib>Srivastava, Poonam</creatorcontrib><creatorcontrib>Ellis-Guardiola, Ken</creatorcontrib><creatorcontrib>Upp, David M.</creatorcontrib><creatorcontrib>Lee, Gihoon</creatorcontrib><creatorcontrib>Belsare, Ketaki</creatorcontrib><creatorcontrib>Gu, Yifan</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Moellering, Raymond E.</creatorcontrib><creatorcontrib>Lewis, Jared C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hao</au><au>Swartz, Alan M.</au><au>Park, Hyun June</au><au>Srivastava, Poonam</au><au>Ellis-Guardiola, Ken</au><au>Upp, David M.</au><au>Lee, Gihoon</au><au>Belsare, Ketaki</au><au>Gu, Yifan</au><au>Zhang, Chen</au><au>Moellering, Raymond E.</au><au>Lewis, Jared C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolving artificial metalloenzymes via random mutagenesis</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>10</volume><issue>3</issue><spage>318</spage><epage>324</epage><pages>318-324</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N–H, S–H and Si–H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others. Proteins have the potential to serve as powerful scaffolds that control the catalytic activity and selectivity of organometallic centres; however, new methods are needed to optimize artificial metalloenzymes. Now, an efficient approach for evolving the activity and selectivity of artificial metalloenzymes has been demonstrated using dirhodium cyclopropanases. This approach does not require structural or mechanistic data to guide mutagenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29461523</pmid><doi>10.1038/nchem.2927</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2043-7838</orcidid><orcidid>https://orcid.org/0000-0003-2800-8330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2018-03, Vol.10 (3), p.318-324
issn 1755-4330
1755-4349
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5891097
source Nature; Alma/SFX Local Collection
subjects 631/45/49/1141
631/61/338/469
639/638/77/603
Analytical Chemistry
Biochemistry
Catalysis
Catalysts
Chemistry
Chemistry/Food Science
Cofactors
Combinatorial analysis
Cyclopropane
Enantiomers
Inorganic Chemistry
Mutagenesis
Mutation
Organic Chemistry
Physical Chemistry
Protein structure
Proteins
Random mutagenesis
Selectivity
Site-directed mutagenesis
title Evolving artificial metalloenzymes via random mutagenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolving%20artificial%20metalloenzymes%20via%20random%20mutagenesis&rft.jtitle=Nature%20chemistry&rft.au=Yang,%20Hao&rft.date=2018-03-01&rft.volume=10&rft.issue=3&rft.spage=318&rft.epage=324&rft.pages=318-324&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2927&rft_dat=%3Cproquest_pubme%3E2316782643%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023385934&rft_id=info:pmid/29461523&rfr_iscdi=true