Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis

Deliberately training with reduced carbohydrate (CHO) availability to enhance endurance-training-induced metabolic adaptations of skeletal muscle (i.e. the ‘train low, compete high’ paradigm) is a hot topic within sport nutrition. Train-low studies involve periodically training (e.g., 30–50% of trai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sports medicine (Auckland) 2018-05, Vol.48 (5), p.1031-1048
Hauptverfasser: Impey, Samuel G., Hearris, Mark A., Hammond, Kelly M., Bartlett, Jonathan D., Louis, Julien, Close, Graeme L., Morton, James P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1048
container_issue 5
container_start_page 1031
container_title Sports medicine (Auckland)
container_volume 48
creator Impey, Samuel G.
Hearris, Mark A.
Hammond, Kelly M.
Bartlett, Jonathan D.
Louis, Julien
Close, Graeme L.
Morton, James P.
description Deliberately training with reduced carbohydrate (CHO) availability to enhance endurance-training-induced metabolic adaptations of skeletal muscle (i.e. the ‘train low, compete high’ paradigm) is a hot topic within sport nutrition. Train-low studies involve periodically training (e.g., 30–50% of training sessions) with reduced CHO availability, where train-low models include twice per day training, fasted training, post-exercise CHO restriction and ‘sleep low, train low’. When compared with high CHO availability, data suggest that augmented cell signalling (73% of 11 studies), gene expression (75% of 12 studies) and training-induced increases in oxidative enzyme activity/protein content (78% of 9 studies) associated with ‘train low’ are especially apparent when training sessions are commenced within a specific range of muscle glycogen concentrations. Nonetheless, such muscle adaptations do not always translate to improved exercise performance (e.g. 37 and 63% of 11 studies show improvements or no change, respectively). Herein, we present our rationale for the glycogen threshold hypothesis, a window of muscle glycogen concentrations that simultaneously permits completion of required training workloads and activation of the molecular machinery regulating training adaptations. We also present the ‘fuel for the work required’ paradigm (representative of an amalgamation of train-low models) whereby CHO availability is adjusted in accordance with the demands of the upcoming training session(s). In order to strategically implement train-low sessions, our challenge now is to quantify the glycogen cost of habitual training sessions (so as to inform the attainment of any potential threshold) and ensure absolute training intensity is not compromised, while also creating a metabolic milieu conducive to facilitating the endurance phenotype.
doi_str_mv 10.1007/s40279-018-0867-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2165000700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-2cb889f6b03f4ba5fd512e69c08704f17027725a8a9693e0978405e435a2695a3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EosPAA7BBlth0E7h27NhhgVSNmLZSpSJUxNJykpuJSyae2gkwPD0O0xaKxMqSz3fP_TmEvGTwhgGot1EAV2UGTGegC5WpR2TBWPrhkMvHZAGM8YwVgh-RZzFeA4DUgj8lR7wUMleCLciP9YQ9bX2gY4f0iw9f6Se8mVzA5h09oVcd-oCjq21P18Fu8ftMzPjKhsp3-ybYEelHDM437qcdnR-oHZrfbqf9vvYbHJJLwNj5vqFn-51PUnTxOXnS2j7ii9t3ST6vP1ytzrKLy9Pz1clFVsu8GDNeV1qXbVFB3orKyraRjGNR1qAViJapdAHFpdW2LMocoVRagESRS8uLUtp8Sd4ffHdTtcWmxmEMtje74LY27I23zjxUBteZjf9mZOqrFEsGx7cGwd9MGEezdbHGvrcD-ikaDpCDEFLP6Ot_0Gs_hSGtZzgrZLq_SvCSsANVBx9jwPZ-GAZmztUccjUpVzPnalSqefX3FvcVd0EmgB-AmKRhg-FP6_-7_gJuNK6L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165000700</pqid></control><display><type>article</type><title>Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis</title><source>SpringerLink Journals</source><creator>Impey, Samuel G. ; Hearris, Mark A. ; Hammond, Kelly M. ; Bartlett, Jonathan D. ; Louis, Julien ; Close, Graeme L. ; Morton, James P.</creator><creatorcontrib>Impey, Samuel G. ; Hearris, Mark A. ; Hammond, Kelly M. ; Bartlett, Jonathan D. ; Louis, Julien ; Close, Graeme L. ; Morton, James P.</creatorcontrib><description>Deliberately training with reduced carbohydrate (CHO) availability to enhance endurance-training-induced metabolic adaptations of skeletal muscle (i.e. the ‘train low, compete high’ paradigm) is a hot topic within sport nutrition. Train-low studies involve periodically training (e.g., 30–50% of training sessions) with reduced CHO availability, where train-low models include twice per day training, fasted training, post-exercise CHO restriction and ‘sleep low, train low’. When compared with high CHO availability, data suggest that augmented cell signalling (73% of 11 studies), gene expression (75% of 12 studies) and training-induced increases in oxidative enzyme activity/protein content (78% of 9 studies) associated with ‘train low’ are especially apparent when training sessions are commenced within a specific range of muscle glycogen concentrations. Nonetheless, such muscle adaptations do not always translate to improved exercise performance (e.g. 37 and 63% of 11 studies show improvements or no change, respectively). Herein, we present our rationale for the glycogen threshold hypothesis, a window of muscle glycogen concentrations that simultaneously permits completion of required training workloads and activation of the molecular machinery regulating training adaptations. We also present the ‘fuel for the work required’ paradigm (representative of an amalgamation of train-low models) whereby CHO availability is adjusted in accordance with the demands of the upcoming training session(s). In order to strategically implement train-low sessions, our challenge now is to quantify the glycogen cost of habitual training sessions (so as to inform the attainment of any potential threshold) and ensure absolute training intensity is not compromised, while also creating a metabolic milieu conducive to facilitating the endurance phenotype.</description><identifier>ISSN: 0112-1642</identifier><identifier>EISSN: 1179-2035</identifier><identifier>DOI: 10.1007/s40279-018-0867-7</identifier><identifier>PMID: 29453741</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptation ; Availability ; Carbohydrates ; Current Opinion ; Diet ; Durability ; Endurance ; Enzymatic activity ; Exercise ; Gene expression ; Glycogen ; Hypotheses ; Medicine ; Medicine &amp; Public Health ; Metabolism ; Molecular machines ; Muscles ; Musculoskeletal system ; Nutrient content ; Nutrition ; Phenotypes ; Physical fitness ; Skeletal muscle ; Sleep ; Sports Medicine ; Workloads</subject><ispartof>Sports medicine (Auckland), 2018-05, Vol.48 (5), p.1031-1048</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science &amp; Business Media May 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-2cb889f6b03f4ba5fd512e69c08704f17027725a8a9693e0978405e435a2695a3</citedby><cites>FETCH-LOGICAL-c536t-2cb889f6b03f4ba5fd512e69c08704f17027725a8a9693e0978405e435a2695a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40279-018-0867-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40279-018-0867-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29453741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Impey, Samuel G.</creatorcontrib><creatorcontrib>Hearris, Mark A.</creatorcontrib><creatorcontrib>Hammond, Kelly M.</creatorcontrib><creatorcontrib>Bartlett, Jonathan D.</creatorcontrib><creatorcontrib>Louis, Julien</creatorcontrib><creatorcontrib>Close, Graeme L.</creatorcontrib><creatorcontrib>Morton, James P.</creatorcontrib><title>Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis</title><title>Sports medicine (Auckland)</title><addtitle>Sports Med</addtitle><addtitle>Sports Med</addtitle><description>Deliberately training with reduced carbohydrate (CHO) availability to enhance endurance-training-induced metabolic adaptations of skeletal muscle (i.e. the ‘train low, compete high’ paradigm) is a hot topic within sport nutrition. Train-low studies involve periodically training (e.g., 30–50% of training sessions) with reduced CHO availability, where train-low models include twice per day training, fasted training, post-exercise CHO restriction and ‘sleep low, train low’. When compared with high CHO availability, data suggest that augmented cell signalling (73% of 11 studies), gene expression (75% of 12 studies) and training-induced increases in oxidative enzyme activity/protein content (78% of 9 studies) associated with ‘train low’ are especially apparent when training sessions are commenced within a specific range of muscle glycogen concentrations. Nonetheless, such muscle adaptations do not always translate to improved exercise performance (e.g. 37 and 63% of 11 studies show improvements or no change, respectively). Herein, we present our rationale for the glycogen threshold hypothesis, a window of muscle glycogen concentrations that simultaneously permits completion of required training workloads and activation of the molecular machinery regulating training adaptations. We also present the ‘fuel for the work required’ paradigm (representative of an amalgamation of train-low models) whereby CHO availability is adjusted in accordance with the demands of the upcoming training session(s). In order to strategically implement train-low sessions, our challenge now is to quantify the glycogen cost of habitual training sessions (so as to inform the attainment of any potential threshold) and ensure absolute training intensity is not compromised, while also creating a metabolic milieu conducive to facilitating the endurance phenotype.</description><subject>Adaptation</subject><subject>Availability</subject><subject>Carbohydrates</subject><subject>Current Opinion</subject><subject>Diet</subject><subject>Durability</subject><subject>Endurance</subject><subject>Enzymatic activity</subject><subject>Exercise</subject><subject>Gene expression</subject><subject>Glycogen</subject><subject>Hypotheses</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolism</subject><subject>Molecular machines</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Nutrient content</subject><subject>Nutrition</subject><subject>Phenotypes</subject><subject>Physical fitness</subject><subject>Skeletal muscle</subject><subject>Sleep</subject><subject>Sports Medicine</subject><subject>Workloads</subject><issn>0112-1642</issn><issn>1179-2035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1u1DAUhS0EosPAA7BBlth0E7h27NhhgVSNmLZSpSJUxNJykpuJSyae2gkwPD0O0xaKxMqSz3fP_TmEvGTwhgGot1EAV2UGTGegC5WpR2TBWPrhkMvHZAGM8YwVgh-RZzFeA4DUgj8lR7wUMleCLciP9YQ9bX2gY4f0iw9f6Se8mVzA5h09oVcd-oCjq21P18Fu8ftMzPjKhsp3-ybYEelHDM437qcdnR-oHZrfbqf9vvYbHJJLwNj5vqFn-51PUnTxOXnS2j7ii9t3ST6vP1ytzrKLy9Pz1clFVsu8GDNeV1qXbVFB3orKyraRjGNR1qAViJapdAHFpdW2LMocoVRagESRS8uLUtp8Sd4ffHdTtcWmxmEMtje74LY27I23zjxUBteZjf9mZOqrFEsGx7cGwd9MGEezdbHGvrcD-ikaDpCDEFLP6Ot_0Gs_hSGtZzgrZLq_SvCSsANVBx9jwPZ-GAZmztUccjUpVzPnalSqefX3FvcVd0EmgB-AmKRhg-FP6_-7_gJuNK6L</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Impey, Samuel G.</creator><creator>Hearris, Mark A.</creator><creator>Hammond, Kelly M.</creator><creator>Bartlett, Jonathan D.</creator><creator>Louis, Julien</creator><creator>Close, Graeme L.</creator><creator>Morton, James P.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QP</scope><scope>7RV</scope><scope>7TS</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180501</creationdate><title>Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis</title><author>Impey, Samuel G. ; Hearris, Mark A. ; Hammond, Kelly M. ; Bartlett, Jonathan D. ; Louis, Julien ; Close, Graeme L. ; Morton, James P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-2cb889f6b03f4ba5fd512e69c08704f17027725a8a9693e0978405e435a2695a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Availability</topic><topic>Carbohydrates</topic><topic>Current Opinion</topic><topic>Diet</topic><topic>Durability</topic><topic>Endurance</topic><topic>Enzymatic activity</topic><topic>Exercise</topic><topic>Gene expression</topic><topic>Glycogen</topic><topic>Hypotheses</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolism</topic><topic>Molecular machines</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Nutrient content</topic><topic>Nutrition</topic><topic>Phenotypes</topic><topic>Physical fitness</topic><topic>Skeletal muscle</topic><topic>Sleep</topic><topic>Sports Medicine</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Impey, Samuel G.</creatorcontrib><creatorcontrib>Hearris, Mark A.</creatorcontrib><creatorcontrib>Hammond, Kelly M.</creatorcontrib><creatorcontrib>Bartlett, Jonathan D.</creatorcontrib><creatorcontrib>Louis, Julien</creatorcontrib><creatorcontrib>Close, Graeme L.</creatorcontrib><creatorcontrib>Morton, James P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Physical Education Index</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sports medicine (Auckland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Impey, Samuel G.</au><au>Hearris, Mark A.</au><au>Hammond, Kelly M.</au><au>Bartlett, Jonathan D.</au><au>Louis, Julien</au><au>Close, Graeme L.</au><au>Morton, James P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis</atitle><jtitle>Sports medicine (Auckland)</jtitle><stitle>Sports Med</stitle><addtitle>Sports Med</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>48</volume><issue>5</issue><spage>1031</spage><epage>1048</epage><pages>1031-1048</pages><issn>0112-1642</issn><eissn>1179-2035</eissn><abstract>Deliberately training with reduced carbohydrate (CHO) availability to enhance endurance-training-induced metabolic adaptations of skeletal muscle (i.e. the ‘train low, compete high’ paradigm) is a hot topic within sport nutrition. Train-low studies involve periodically training (e.g., 30–50% of training sessions) with reduced CHO availability, where train-low models include twice per day training, fasted training, post-exercise CHO restriction and ‘sleep low, train low’. When compared with high CHO availability, data suggest that augmented cell signalling (73% of 11 studies), gene expression (75% of 12 studies) and training-induced increases in oxidative enzyme activity/protein content (78% of 9 studies) associated with ‘train low’ are especially apparent when training sessions are commenced within a specific range of muscle glycogen concentrations. Nonetheless, such muscle adaptations do not always translate to improved exercise performance (e.g. 37 and 63% of 11 studies show improvements or no change, respectively). Herein, we present our rationale for the glycogen threshold hypothesis, a window of muscle glycogen concentrations that simultaneously permits completion of required training workloads and activation of the molecular machinery regulating training adaptations. We also present the ‘fuel for the work required’ paradigm (representative of an amalgamation of train-low models) whereby CHO availability is adjusted in accordance with the demands of the upcoming training session(s). In order to strategically implement train-low sessions, our challenge now is to quantify the glycogen cost of habitual training sessions (so as to inform the attainment of any potential threshold) and ensure absolute training intensity is not compromised, while also creating a metabolic milieu conducive to facilitating the endurance phenotype.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>29453741</pmid><doi>10.1007/s40279-018-0867-7</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0112-1642
ispartof Sports medicine (Auckland), 2018-05, Vol.48 (5), p.1031-1048
issn 0112-1642
1179-2035
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889771
source SpringerLink Journals
subjects Adaptation
Availability
Carbohydrates
Current Opinion
Diet
Durability
Endurance
Enzymatic activity
Exercise
Gene expression
Glycogen
Hypotheses
Medicine
Medicine & Public Health
Metabolism
Molecular machines
Muscles
Musculoskeletal system
Nutrient content
Nutrition
Phenotypes
Physical fitness
Skeletal muscle
Sleep
Sports Medicine
Workloads
title Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel%20for%20the%20Work%20Required:%20A%20Theoretical%20Framework%20for%20Carbohydrate%20Periodization%20and%20the%20Glycogen%20Threshold%20Hypothesis&rft.jtitle=Sports%20medicine%20(Auckland)&rft.au=Impey,%20Samuel%20G.&rft.date=2018-05-01&rft.volume=48&rft.issue=5&rft.spage=1031&rft.epage=1048&rft.pages=1031-1048&rft.issn=0112-1642&rft.eissn=1179-2035&rft_id=info:doi/10.1007/s40279-018-0867-7&rft_dat=%3Cproquest_pubme%3E2165000700%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165000700&rft_id=info:pmid/29453741&rfr_iscdi=true