Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis
Deliberately training with reduced carbohydrate (CHO) availability to enhance endurance-training-induced metabolic adaptations of skeletal muscle (i.e. the ‘train low, compete high’ paradigm) is a hot topic within sport nutrition. Train-low studies involve periodically training (e.g., 30–50% of trai...
Gespeichert in:
Veröffentlicht in: | Sports medicine (Auckland) 2018-05, Vol.48 (5), p.1031-1048 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1048 |
---|---|
container_issue | 5 |
container_start_page | 1031 |
container_title | Sports medicine (Auckland) |
container_volume | 48 |
creator | Impey, Samuel G. Hearris, Mark A. Hammond, Kelly M. Bartlett, Jonathan D. Louis, Julien Close, Graeme L. Morton, James P. |
description | Deliberately training with reduced carbohydrate (CHO) availability to enhance endurance-training-induced metabolic adaptations of skeletal muscle (i.e. the ‘train low, compete high’ paradigm) is a hot topic within sport nutrition. Train-low studies involve periodically training (e.g., 30–50% of training sessions) with reduced CHO availability, where train-low models include twice per day training, fasted training, post-exercise CHO restriction and ‘sleep low, train low’. When compared with high CHO availability, data suggest that augmented cell signalling (73% of 11 studies), gene expression (75% of 12 studies) and training-induced increases in oxidative enzyme activity/protein content (78% of 9 studies) associated with ‘train low’ are especially apparent when training sessions are commenced within a specific range of muscle glycogen concentrations. Nonetheless, such muscle adaptations do not always translate to improved exercise performance (e.g. 37 and 63% of 11 studies show improvements or no change, respectively). Herein, we present our rationale for the glycogen threshold hypothesis, a window of muscle glycogen concentrations that simultaneously permits completion of required training workloads and activation of the molecular machinery regulating training adaptations. We also present the ‘fuel for the work required’ paradigm (representative of an amalgamation of train-low models) whereby CHO availability is adjusted in accordance with the demands of the upcoming training session(s). In order to strategically implement train-low sessions, our challenge now is to quantify the glycogen cost of habitual training sessions (so as to inform the attainment of any potential threshold) and ensure absolute training intensity is not compromised, while also creating a metabolic milieu conducive to facilitating the endurance phenotype. |
doi_str_mv | 10.1007/s40279-018-0867-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2165000700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-2cb889f6b03f4ba5fd512e69c08704f17027725a8a9693e0978405e435a2695a3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EosPAA7BBlth0E7h27NhhgVSNmLZSpSJUxNJykpuJSyae2gkwPD0O0xaKxMqSz3fP_TmEvGTwhgGot1EAV2UGTGegC5WpR2TBWPrhkMvHZAGM8YwVgh-RZzFeA4DUgj8lR7wUMleCLciP9YQ9bX2gY4f0iw9f6Se8mVzA5h09oVcd-oCjq21P18Fu8ftMzPjKhsp3-ybYEelHDM437qcdnR-oHZrfbqf9vvYbHJJLwNj5vqFn-51PUnTxOXnS2j7ii9t3ST6vP1ytzrKLy9Pz1clFVsu8GDNeV1qXbVFB3orKyraRjGNR1qAViJapdAHFpdW2LMocoVRagESRS8uLUtp8Sd4ffHdTtcWmxmEMtje74LY27I23zjxUBteZjf9mZOqrFEsGx7cGwd9MGEezdbHGvrcD-ikaDpCDEFLP6Ot_0Gs_hSGtZzgrZLq_SvCSsANVBx9jwPZ-GAZmztUccjUpVzPnalSqefX3FvcVd0EmgB-AmKRhg-FP6_-7_gJuNK6L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165000700</pqid></control><display><type>article</type><title>Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis</title><source>SpringerLink Journals</source><creator>Impey, Samuel G. ; Hearris, Mark A. ; Hammond, Kelly M. ; Bartlett, Jonathan D. ; Louis, Julien ; Close, Graeme L. ; Morton, James P.</creator><creatorcontrib>Impey, Samuel G. ; Hearris, Mark A. ; Hammond, Kelly M. ; Bartlett, Jonathan D. ; Louis, Julien ; Close, Graeme L. ; Morton, James P.</creatorcontrib><description>Deliberately training with reduced carbohydrate (CHO) availability to enhance endurance-training-induced metabolic adaptations of skeletal muscle (i.e. the ‘train low, compete high’ paradigm) is a hot topic within sport nutrition. Train-low studies involve periodically training (e.g., 30–50% of training sessions) with reduced CHO availability, where train-low models include twice per day training, fasted training, post-exercise CHO restriction and ‘sleep low, train low’. When compared with high CHO availability, data suggest that augmented cell signalling (73% of 11 studies), gene expression (75% of 12 studies) and training-induced increases in oxidative enzyme activity/protein content (78% of 9 studies) associated with ‘train low’ are especially apparent when training sessions are commenced within a specific range of muscle glycogen concentrations. Nonetheless, such muscle adaptations do not always translate to improved exercise performance (e.g. 37 and 63% of 11 studies show improvements or no change, respectively). Herein, we present our rationale for the glycogen threshold hypothesis, a window of muscle glycogen concentrations that simultaneously permits completion of required training workloads and activation of the molecular machinery regulating training adaptations. We also present the ‘fuel for the work required’ paradigm (representative of an amalgamation of train-low models) whereby CHO availability is adjusted in accordance with the demands of the upcoming training session(s). In order to strategically implement train-low sessions, our challenge now is to quantify the glycogen cost of habitual training sessions (so as to inform the attainment of any potential threshold) and ensure absolute training intensity is not compromised, while also creating a metabolic milieu conducive to facilitating the endurance phenotype.</description><identifier>ISSN: 0112-1642</identifier><identifier>EISSN: 1179-2035</identifier><identifier>DOI: 10.1007/s40279-018-0867-7</identifier><identifier>PMID: 29453741</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptation ; Availability ; Carbohydrates ; Current Opinion ; Diet ; Durability ; Endurance ; Enzymatic activity ; Exercise ; Gene expression ; Glycogen ; Hypotheses ; Medicine ; Medicine & Public Health ; Metabolism ; Molecular machines ; Muscles ; Musculoskeletal system ; Nutrient content ; Nutrition ; Phenotypes ; Physical fitness ; Skeletal muscle ; Sleep ; Sports Medicine ; Workloads</subject><ispartof>Sports medicine (Auckland), 2018-05, Vol.48 (5), p.1031-1048</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science & Business Media May 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-2cb889f6b03f4ba5fd512e69c08704f17027725a8a9693e0978405e435a2695a3</citedby><cites>FETCH-LOGICAL-c536t-2cb889f6b03f4ba5fd512e69c08704f17027725a8a9693e0978405e435a2695a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40279-018-0867-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40279-018-0867-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29453741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Impey, Samuel G.</creatorcontrib><creatorcontrib>Hearris, Mark A.</creatorcontrib><creatorcontrib>Hammond, Kelly M.</creatorcontrib><creatorcontrib>Bartlett, Jonathan D.</creatorcontrib><creatorcontrib>Louis, Julien</creatorcontrib><creatorcontrib>Close, Graeme L.</creatorcontrib><creatorcontrib>Morton, James P.</creatorcontrib><title>Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis</title><title>Sports medicine (Auckland)</title><addtitle>Sports Med</addtitle><addtitle>Sports Med</addtitle><description>Deliberately training with reduced carbohydrate (CHO) availability to enhance endurance-training-induced metabolic adaptations of skeletal muscle (i.e. the ‘train low, compete high’ paradigm) is a hot topic within sport nutrition. Train-low studies involve periodically training (e.g., 30–50% of training sessions) with reduced CHO availability, where train-low models include twice per day training, fasted training, post-exercise CHO restriction and ‘sleep low, train low’. When compared with high CHO availability, data suggest that augmented cell signalling (73% of 11 studies), gene expression (75% of 12 studies) and training-induced increases in oxidative enzyme activity/protein content (78% of 9 studies) associated with ‘train low’ are especially apparent when training sessions are commenced within a specific range of muscle glycogen concentrations. Nonetheless, such muscle adaptations do not always translate to improved exercise performance (e.g. 37 and 63% of 11 studies show improvements or no change, respectively). Herein, we present our rationale for the glycogen threshold hypothesis, a window of muscle glycogen concentrations that simultaneously permits completion of required training workloads and activation of the molecular machinery regulating training adaptations. We also present the ‘fuel for the work required’ paradigm (representative of an amalgamation of train-low models) whereby CHO availability is adjusted in accordance with the demands of the upcoming training session(s). In order to strategically implement train-low sessions, our challenge now is to quantify the glycogen cost of habitual training sessions (so as to inform the attainment of any potential threshold) and ensure absolute training intensity is not compromised, while also creating a metabolic milieu conducive to facilitating the endurance phenotype.</description><subject>Adaptation</subject><subject>Availability</subject><subject>Carbohydrates</subject><subject>Current Opinion</subject><subject>Diet</subject><subject>Durability</subject><subject>Endurance</subject><subject>Enzymatic activity</subject><subject>Exercise</subject><subject>Gene expression</subject><subject>Glycogen</subject><subject>Hypotheses</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolism</subject><subject>Molecular machines</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Nutrient content</subject><subject>Nutrition</subject><subject>Phenotypes</subject><subject>Physical fitness</subject><subject>Skeletal muscle</subject><subject>Sleep</subject><subject>Sports Medicine</subject><subject>Workloads</subject><issn>0112-1642</issn><issn>1179-2035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1u1DAUhS0EosPAA7BBlth0E7h27NhhgVSNmLZSpSJUxNJykpuJSyae2gkwPD0O0xaKxMqSz3fP_TmEvGTwhgGot1EAV2UGTGegC5WpR2TBWPrhkMvHZAGM8YwVgh-RZzFeA4DUgj8lR7wUMleCLciP9YQ9bX2gY4f0iw9f6Se8mVzA5h09oVcd-oCjq21P18Fu8ftMzPjKhsp3-ybYEelHDM437qcdnR-oHZrfbqf9vvYbHJJLwNj5vqFn-51PUnTxOXnS2j7ii9t3ST6vP1ytzrKLy9Pz1clFVsu8GDNeV1qXbVFB3orKyraRjGNR1qAViJapdAHFpdW2LMocoVRagESRS8uLUtp8Sd4ffHdTtcWmxmEMtje74LY27I23zjxUBteZjf9mZOqrFEsGx7cGwd9MGEezdbHGvrcD-ikaDpCDEFLP6Ot_0Gs_hSGtZzgrZLq_SvCSsANVBx9jwPZ-GAZmztUccjUpVzPnalSqefX3FvcVd0EmgB-AmKRhg-FP6_-7_gJuNK6L</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Impey, Samuel G.</creator><creator>Hearris, Mark A.</creator><creator>Hammond, Kelly M.</creator><creator>Bartlett, Jonathan D.</creator><creator>Louis, Julien</creator><creator>Close, Graeme L.</creator><creator>Morton, James P.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QP</scope><scope>7RV</scope><scope>7TS</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180501</creationdate><title>Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis</title><author>Impey, Samuel G. ; Hearris, Mark A. ; Hammond, Kelly M. ; Bartlett, Jonathan D. ; Louis, Julien ; Close, Graeme L. ; Morton, James P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-2cb889f6b03f4ba5fd512e69c08704f17027725a8a9693e0978405e435a2695a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Availability</topic><topic>Carbohydrates</topic><topic>Current Opinion</topic><topic>Diet</topic><topic>Durability</topic><topic>Endurance</topic><topic>Enzymatic activity</topic><topic>Exercise</topic><topic>Gene expression</topic><topic>Glycogen</topic><topic>Hypotheses</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolism</topic><topic>Molecular machines</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Nutrient content</topic><topic>Nutrition</topic><topic>Phenotypes</topic><topic>Physical fitness</topic><topic>Skeletal muscle</topic><topic>Sleep</topic><topic>Sports Medicine</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Impey, Samuel G.</creatorcontrib><creatorcontrib>Hearris, Mark A.</creatorcontrib><creatorcontrib>Hammond, Kelly M.</creatorcontrib><creatorcontrib>Bartlett, Jonathan D.</creatorcontrib><creatorcontrib>Louis, Julien</creatorcontrib><creatorcontrib>Close, Graeme L.</creatorcontrib><creatorcontrib>Morton, James P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Physical Education Index</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sports medicine (Auckland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Impey, Samuel G.</au><au>Hearris, Mark A.</au><au>Hammond, Kelly M.</au><au>Bartlett, Jonathan D.</au><au>Louis, Julien</au><au>Close, Graeme L.</au><au>Morton, James P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis</atitle><jtitle>Sports medicine (Auckland)</jtitle><stitle>Sports Med</stitle><addtitle>Sports Med</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>48</volume><issue>5</issue><spage>1031</spage><epage>1048</epage><pages>1031-1048</pages><issn>0112-1642</issn><eissn>1179-2035</eissn><abstract>Deliberately training with reduced carbohydrate (CHO) availability to enhance endurance-training-induced metabolic adaptations of skeletal muscle (i.e. the ‘train low, compete high’ paradigm) is a hot topic within sport nutrition. Train-low studies involve periodically training (e.g., 30–50% of training sessions) with reduced CHO availability, where train-low models include twice per day training, fasted training, post-exercise CHO restriction and ‘sleep low, train low’. When compared with high CHO availability, data suggest that augmented cell signalling (73% of 11 studies), gene expression (75% of 12 studies) and training-induced increases in oxidative enzyme activity/protein content (78% of 9 studies) associated with ‘train low’ are especially apparent when training sessions are commenced within a specific range of muscle glycogen concentrations. Nonetheless, such muscle adaptations do not always translate to improved exercise performance (e.g. 37 and 63% of 11 studies show improvements or no change, respectively). Herein, we present our rationale for the glycogen threshold hypothesis, a window of muscle glycogen concentrations that simultaneously permits completion of required training workloads and activation of the molecular machinery regulating training adaptations. We also present the ‘fuel for the work required’ paradigm (representative of an amalgamation of train-low models) whereby CHO availability is adjusted in accordance with the demands of the upcoming training session(s). In order to strategically implement train-low sessions, our challenge now is to quantify the glycogen cost of habitual training sessions (so as to inform the attainment of any potential threshold) and ensure absolute training intensity is not compromised, while also creating a metabolic milieu conducive to facilitating the endurance phenotype.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>29453741</pmid><doi>10.1007/s40279-018-0867-7</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0112-1642 |
ispartof | Sports medicine (Auckland), 2018-05, Vol.48 (5), p.1031-1048 |
issn | 0112-1642 1179-2035 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889771 |
source | SpringerLink Journals |
subjects | Adaptation Availability Carbohydrates Current Opinion Diet Durability Endurance Enzymatic activity Exercise Gene expression Glycogen Hypotheses Medicine Medicine & Public Health Metabolism Molecular machines Muscles Musculoskeletal system Nutrient content Nutrition Phenotypes Physical fitness Skeletal muscle Sleep Sports Medicine Workloads |
title | Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel%20for%20the%20Work%20Required:%20A%20Theoretical%20Framework%20for%20Carbohydrate%20Periodization%20and%20the%20Glycogen%20Threshold%20Hypothesis&rft.jtitle=Sports%20medicine%20(Auckland)&rft.au=Impey,%20Samuel%20G.&rft.date=2018-05-01&rft.volume=48&rft.issue=5&rft.spage=1031&rft.epage=1048&rft.pages=1031-1048&rft.issn=0112-1642&rft.eissn=1179-2035&rft_id=info:doi/10.1007/s40279-018-0867-7&rft_dat=%3Cproquest_pubme%3E2165000700%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165000700&rft_id=info:pmid/29453741&rfr_iscdi=true |