Maternal, dominance and additive genetic effects in Nile tilapia; influence on growth, fillet yield and body size traits

There are only few studies of dominance effects in non-inbred aquaculture species, since commonly used mating designs often have low power to separate dominance, maternal and common environmental effects. Here, a factorial design with reciprocal cross, common rearing of eggs and subsequent lifecycle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heredity 2018-05, Vol.120 (5), p.452-462
Hauptverfasser: Joshi, R, Woolliams, J A, Meuwissen, The, Gjøen, H M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 5
container_start_page 452
container_title Heredity
container_volume 120
creator Joshi, R
Woolliams, J A
Meuwissen, The
Gjøen, H M
description There are only few studies of dominance effects in non-inbred aquaculture species, since commonly used mating designs often have low power to separate dominance, maternal and common environmental effects. Here, a factorial design with reciprocal cross, common rearing of eggs and subsequent lifecycle stages and pedigree assignment using DNA microsatellites was used to separate these effects and estimate dominance (d ) and maternal (m ) ratios in Nile tilapia for six commercial traits. The study included observations on 2524 offspring from 155 full-sib families. Substantial contributions of dominance were observed (P 
doi_str_mv 10.1038/s41437-017-0046-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022520404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-8432040e750bab51da4b2055a947b47c954097ddd175f4505106e2ce1365f8803</originalsourceid><addsrcrecordid>eNpdkV9vFCEUxYnR2LX6AXwxJL740KkXBmaYmJiYxj9Nqr5o4hthhjtbGhbWgam7fvoybm2qD4QEzjlw7o-Q5wxOGdTqdRJM1G0FrCwQTbV7QFasbmTFpYCHZAXAVAVN--OIPEnpCgDqlnePyRHv6lo2HFZk99lknILxJ9TGjQsmDEhNsNRY67K7RrrGgNkNFMcRh5yoC_SL80iz82brzJtyMPoZF18MdD3FX_nyhI7Oe8x079DbP3l9tHua3O9inIzL6Sl5NBqf8Nntfky-f3j_7exTdfH14_nZu4tqELzNlRI1BwHYSuhNL5k1oucgpelE24t26ErTrrXWslaOQoJk0CAfcBnDqBTUx-TtIXc79xu0A4byvtfbyW3MtNfROP3vTXCXeh2vtVSqE7AEvLoNmOLPGVPWG5cG9N4EjHPSrFOdVJIpWaQv_5NexXkZbtIcOJdLE1FU7KAappjShOPdZxjohas-cNWFq1646l3xvLjf4s7xF2R9A-Umnt8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022520404</pqid></control><display><type>article</type><title>Maternal, dominance and additive genetic effects in Nile tilapia; influence on growth, fillet yield and body size traits</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Joshi, R ; Woolliams, J A ; Meuwissen, The ; Gjøen, H M</creator><creatorcontrib>Joshi, R ; Woolliams, J A ; Meuwissen, The ; Gjøen, H M</creatorcontrib><description>There are only few studies of dominance effects in non-inbred aquaculture species, since commonly used mating designs often have low power to separate dominance, maternal and common environmental effects. Here, a factorial design with reciprocal cross, common rearing of eggs and subsequent lifecycle stages and pedigree assignment using DNA microsatellites was used to separate these effects and estimate dominance (d ) and maternal (m ) ratios in Nile tilapia for six commercial traits. The study included observations on 2524 offspring from 155 full-sib families. Substantial contributions of dominance were observed (P &lt; 0.05) for body depth (BD) and body weight at harvest (BWH) with estimates of d  = 0.27 (s.e. 0.09) and 0.23 (s.e. 0.09), respectively in the current breeding population. In addition the study found maternal variance (P &lt; 0.05) for BD, BWH, body thickness and fillet weight explaining ~10% of the observed phenotypic variance. For fillet yield (FY) and body length (BL), no evidence was found for either maternal or dominance variance. For traits exhibiting maternal variance, including this effect in evaluations caused substantial re-ranking of selection candidates, but the impact of including dominance effects was notably less. Breeding schemes may benefit from utilising maternal variance in increasing accuracy of evaluations, reducing bias, and developing new lines, but the utilisation of the dominance variance may require further refinement of parameter estimates.</description><identifier>ISSN: 0018-067X</identifier><identifier>EISSN: 1365-2540</identifier><identifier>DOI: 10.1038/s41437-017-0046-x</identifier><identifier>PMID: 29335620</identifier><language>eng</language><publisher>England: Springer Nature B.V</publisher><subject>Animals ; Aquaculture ; Autosomal dominant inheritance ; Body length ; Body size ; Body Size - genetics ; Body weight ; Body Weight - genetics ; Breeding ; Cichlids - genetics ; Cichlids - growth &amp; development ; Cichlids - physiology ; Deoxyribonucleic acid ; DNA ; Dominance ; Eggs ; Environmental effects ; Factorial design ; Female ; Fish ; Genes, Dominant - genetics ; Genetic crosses ; Genetic effects ; Genotype ; Inbreeding ; Male ; Maternal Inheritance - genetics ; Microsatellites ; Models, Statistical ; Offspring ; Oreochromis niloticus ; Parameter estimation ; Pedigree ; Phenotype ; Population studies ; Tilapia</subject><ispartof>Heredity, 2018-05, Vol.120 (5), p.452-462</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-8432040e750bab51da4b2055a947b47c954097ddd175f4505106e2ce1365f8803</citedby><cites>FETCH-LOGICAL-c427t-8432040e750bab51da4b2055a947b47c954097ddd175f4505106e2ce1365f8803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889400/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889400/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29335620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joshi, R</creatorcontrib><creatorcontrib>Woolliams, J A</creatorcontrib><creatorcontrib>Meuwissen, The</creatorcontrib><creatorcontrib>Gjøen, H M</creatorcontrib><title>Maternal, dominance and additive genetic effects in Nile tilapia; influence on growth, fillet yield and body size traits</title><title>Heredity</title><addtitle>Heredity (Edinb)</addtitle><description>There are only few studies of dominance effects in non-inbred aquaculture species, since commonly used mating designs often have low power to separate dominance, maternal and common environmental effects. Here, a factorial design with reciprocal cross, common rearing of eggs and subsequent lifecycle stages and pedigree assignment using DNA microsatellites was used to separate these effects and estimate dominance (d ) and maternal (m ) ratios in Nile tilapia for six commercial traits. The study included observations on 2524 offspring from 155 full-sib families. Substantial contributions of dominance were observed (P &lt; 0.05) for body depth (BD) and body weight at harvest (BWH) with estimates of d  = 0.27 (s.e. 0.09) and 0.23 (s.e. 0.09), respectively in the current breeding population. In addition the study found maternal variance (P &lt; 0.05) for BD, BWH, body thickness and fillet weight explaining ~10% of the observed phenotypic variance. For fillet yield (FY) and body length (BL), no evidence was found for either maternal or dominance variance. For traits exhibiting maternal variance, including this effect in evaluations caused substantial re-ranking of selection candidates, but the impact of including dominance effects was notably less. Breeding schemes may benefit from utilising maternal variance in increasing accuracy of evaluations, reducing bias, and developing new lines, but the utilisation of the dominance variance may require further refinement of parameter estimates.</description><subject>Animals</subject><subject>Aquaculture</subject><subject>Autosomal dominant inheritance</subject><subject>Body length</subject><subject>Body size</subject><subject>Body Size - genetics</subject><subject>Body weight</subject><subject>Body Weight - genetics</subject><subject>Breeding</subject><subject>Cichlids - genetics</subject><subject>Cichlids - growth &amp; development</subject><subject>Cichlids - physiology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dominance</subject><subject>Eggs</subject><subject>Environmental effects</subject><subject>Factorial design</subject><subject>Female</subject><subject>Fish</subject><subject>Genes, Dominant - genetics</subject><subject>Genetic crosses</subject><subject>Genetic effects</subject><subject>Genotype</subject><subject>Inbreeding</subject><subject>Male</subject><subject>Maternal Inheritance - genetics</subject><subject>Microsatellites</subject><subject>Models, Statistical</subject><subject>Offspring</subject><subject>Oreochromis niloticus</subject><subject>Parameter estimation</subject><subject>Pedigree</subject><subject>Phenotype</subject><subject>Population studies</subject><subject>Tilapia</subject><issn>0018-067X</issn><issn>1365-2540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkV9vFCEUxYnR2LX6AXwxJL740KkXBmaYmJiYxj9Nqr5o4hthhjtbGhbWgam7fvoybm2qD4QEzjlw7o-Q5wxOGdTqdRJM1G0FrCwQTbV7QFasbmTFpYCHZAXAVAVN--OIPEnpCgDqlnePyRHv6lo2HFZk99lknILxJ9TGjQsmDEhNsNRY67K7RrrGgNkNFMcRh5yoC_SL80iz82brzJtyMPoZF18MdD3FX_nyhI7Oe8x079DbP3l9tHua3O9inIzL6Sl5NBqf8Nntfky-f3j_7exTdfH14_nZu4tqELzNlRI1BwHYSuhNL5k1oucgpelE24t26ErTrrXWslaOQoJk0CAfcBnDqBTUx-TtIXc79xu0A4byvtfbyW3MtNfROP3vTXCXeh2vtVSqE7AEvLoNmOLPGVPWG5cG9N4EjHPSrFOdVJIpWaQv_5NexXkZbtIcOJdLE1FU7KAappjShOPdZxjohas-cNWFq1646l3xvLjf4s7xF2R9A-Umnt8</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Joshi, R</creator><creator>Woolliams, J A</creator><creator>Meuwissen, The</creator><creator>Gjøen, H M</creator><general>Springer Nature B.V</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180501</creationdate><title>Maternal, dominance and additive genetic effects in Nile tilapia; influence on growth, fillet yield and body size traits</title><author>Joshi, R ; Woolliams, J A ; Meuwissen, The ; Gjøen, H M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-8432040e750bab51da4b2055a947b47c954097ddd175f4505106e2ce1365f8803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Aquaculture</topic><topic>Autosomal dominant inheritance</topic><topic>Body length</topic><topic>Body size</topic><topic>Body Size - genetics</topic><topic>Body weight</topic><topic>Body Weight - genetics</topic><topic>Breeding</topic><topic>Cichlids - genetics</topic><topic>Cichlids - growth &amp; development</topic><topic>Cichlids - physiology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dominance</topic><topic>Eggs</topic><topic>Environmental effects</topic><topic>Factorial design</topic><topic>Female</topic><topic>Fish</topic><topic>Genes, Dominant - genetics</topic><topic>Genetic crosses</topic><topic>Genetic effects</topic><topic>Genotype</topic><topic>Inbreeding</topic><topic>Male</topic><topic>Maternal Inheritance - genetics</topic><topic>Microsatellites</topic><topic>Models, Statistical</topic><topic>Offspring</topic><topic>Oreochromis niloticus</topic><topic>Parameter estimation</topic><topic>Pedigree</topic><topic>Phenotype</topic><topic>Population studies</topic><topic>Tilapia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, R</creatorcontrib><creatorcontrib>Woolliams, J A</creatorcontrib><creatorcontrib>Meuwissen, The</creatorcontrib><creatorcontrib>Gjøen, H M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, R</au><au>Woolliams, J A</au><au>Meuwissen, The</au><au>Gjøen, H M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maternal, dominance and additive genetic effects in Nile tilapia; influence on growth, fillet yield and body size traits</atitle><jtitle>Heredity</jtitle><addtitle>Heredity (Edinb)</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>120</volume><issue>5</issue><spage>452</spage><epage>462</epage><pages>452-462</pages><issn>0018-067X</issn><eissn>1365-2540</eissn><abstract>There are only few studies of dominance effects in non-inbred aquaculture species, since commonly used mating designs often have low power to separate dominance, maternal and common environmental effects. Here, a factorial design with reciprocal cross, common rearing of eggs and subsequent lifecycle stages and pedigree assignment using DNA microsatellites was used to separate these effects and estimate dominance (d ) and maternal (m ) ratios in Nile tilapia for six commercial traits. The study included observations on 2524 offspring from 155 full-sib families. Substantial contributions of dominance were observed (P &lt; 0.05) for body depth (BD) and body weight at harvest (BWH) with estimates of d  = 0.27 (s.e. 0.09) and 0.23 (s.e. 0.09), respectively in the current breeding population. In addition the study found maternal variance (P &lt; 0.05) for BD, BWH, body thickness and fillet weight explaining ~10% of the observed phenotypic variance. For fillet yield (FY) and body length (BL), no evidence was found for either maternal or dominance variance. For traits exhibiting maternal variance, including this effect in evaluations caused substantial re-ranking of selection candidates, but the impact of including dominance effects was notably less. Breeding schemes may benefit from utilising maternal variance in increasing accuracy of evaluations, reducing bias, and developing new lines, but the utilisation of the dominance variance may require further refinement of parameter estimates.</abstract><cop>England</cop><pub>Springer Nature B.V</pub><pmid>29335620</pmid><doi>10.1038/s41437-017-0046-x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-067X
ispartof Heredity, 2018-05, Vol.120 (5), p.452-462
issn 0018-067X
1365-2540
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889400
source MEDLINE; Nature; SpringerNature Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Aquaculture
Autosomal dominant inheritance
Body length
Body size
Body Size - genetics
Body weight
Body Weight - genetics
Breeding
Cichlids - genetics
Cichlids - growth & development
Cichlids - physiology
Deoxyribonucleic acid
DNA
Dominance
Eggs
Environmental effects
Factorial design
Female
Fish
Genes, Dominant - genetics
Genetic crosses
Genetic effects
Genotype
Inbreeding
Male
Maternal Inheritance - genetics
Microsatellites
Models, Statistical
Offspring
Oreochromis niloticus
Parameter estimation
Pedigree
Phenotype
Population studies
Tilapia
title Maternal, dominance and additive genetic effects in Nile tilapia; influence on growth, fillet yield and body size traits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maternal,%20dominance%20and%20additive%20genetic%20effects%20in%20Nile%20tilapia;%20influence%20on%20growth,%20fillet%20yield%20and%20body%20size%20traits&rft.jtitle=Heredity&rft.au=Joshi,%20R&rft.date=2018-05-01&rft.volume=120&rft.issue=5&rft.spage=452&rft.epage=462&rft.pages=452-462&rft.issn=0018-067X&rft.eissn=1365-2540&rft_id=info:doi/10.1038/s41437-017-0046-x&rft_dat=%3Cproquest_pubme%3E2022520404%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022520404&rft_id=info:pmid/29335620&rfr_iscdi=true