Development of Concurrent Retinotopic Maps in the Fly Motion Detection Circuit

Understanding how complex brain wiring is produced during development is a daunting challenge. In Drosophila, information from 800 retinal ommatidia is processed in distinct brain neuropiles, each subdivided into 800 matching retinotopic columns. The lobula plate comprises four T4 and four T5 neuron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2018-04, Vol.173 (2), p.485-498.e11
Hauptverfasser: Pinto-Teixeira, Filipe, Koo, Clara, Rossi, Anthony Michael, Neriec, Nathalie, Bertet, Claire, Li, Xin, Del-Valle-Rodriguez, Alberto, Desplan, Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 498.e11
container_issue 2
container_start_page 485
container_title Cell
container_volume 173
creator Pinto-Teixeira, Filipe
Koo, Clara
Rossi, Anthony Michael
Neriec, Nathalie
Bertet, Claire
Li, Xin
Del-Valle-Rodriguez, Alberto
Desplan, Claude
description Understanding how complex brain wiring is produced during development is a daunting challenge. In Drosophila, information from 800 retinal ommatidia is processed in distinct brain neuropiles, each subdivided into 800 matching retinotopic columns. The lobula plate comprises four T4 and four T5 neuronal subtypes. T4 neurons respond to bright edge motion, whereas T5 neurons respond to dark edge motion. Each is tuned to motion in one of the four cardinal directions, effectively establishing eight concurrent retinotopic maps to support wide-field motion. We discovered a mode of neurogenesis where two sequential Notch-dependent divisions of either a horizontal or a vertical progenitor produce matching sets of two T4 and two T5 neurons retinotopically coincident with pairwise opposite direction selectivity. We show that retinotopy is an emergent characteristic of this neurogenic program and derives directly from neuronal birth order. Our work illustrates how simple developmental rules can implement complex neural organization. [Display omitted] •A neuroblast produces four neurons detecting two directions of bright or dark edge motion•Distinct progenitors produce neurons processing vertical versus horizontal motion•Notch specifies neurons responding to bright or dark edge motion•This mode of neurogenesis establishes retinotopy in the fly global motion system The circuit for motion perception emerges out of the developmental program that specifies the identity of neurons.
doi_str_mv 10.1016/j.cell.2018.02.053
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867418302307</els_id><sourcerecordid>2018662980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-fa175f24ea5782e56800eae3c48ee388b39961eaf05ca48bce961331cee21ed13</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRCILoU_wAHlSA8J46_EkRBStaUUaQsSgrPl9U5Yr7JxsJ2V-u9xum1FOcDJnvF7b57nEfKaQkWB1u92lcW-rxhQVQGrQPInZEGhbUpBG_aULABaVqq6ESfkRYw7AFBSyufkhLWyqYWUC_LlAg_Y-3GPQyp8Vyz9YKcQ5uobJjf45Edni2szxsINRdpicdnfFNc-OT8UF5jQ3t6WLtjJpZfkWWf6iK_uzlPy4_Lj9-VVufr66fPyfFVayVgqO0Mb2TGBRjaKoawVABrkVihErtSat21N0XQgrRFqbTGXnFOLyChuKD8lH46647Te48Zmv8H0egxub8KN9sbpxy-D2-qf_qClUi0XTRY4Owps_6Jdna_03AMGeUmgDvOwt3fDgv81YUx67-K8ejOgn6JmkgnGaSvF_6E5q7pmrYIMZUeoDT7GgN2DDQp6zlfv9My85WQ7OuebSW_-_PcD5T7QDHh_BGDe_sFh0NE6HCxuXMhR6Y13_9L_DbJUtsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2018662980</pqid></control><display><type>article</type><title>Development of Concurrent Retinotopic Maps in the Fly Motion Detection Circuit</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pinto-Teixeira, Filipe ; Koo, Clara ; Rossi, Anthony Michael ; Neriec, Nathalie ; Bertet, Claire ; Li, Xin ; Del-Valle-Rodriguez, Alberto ; Desplan, Claude</creator><creatorcontrib>Pinto-Teixeira, Filipe ; Koo, Clara ; Rossi, Anthony Michael ; Neriec, Nathalie ; Bertet, Claire ; Li, Xin ; Del-Valle-Rodriguez, Alberto ; Desplan, Claude</creatorcontrib><description>Understanding how complex brain wiring is produced during development is a daunting challenge. In Drosophila, information from 800 retinal ommatidia is processed in distinct brain neuropiles, each subdivided into 800 matching retinotopic columns. The lobula plate comprises four T4 and four T5 neuronal subtypes. T4 neurons respond to bright edge motion, whereas T5 neurons respond to dark edge motion. Each is tuned to motion in one of the four cardinal directions, effectively establishing eight concurrent retinotopic maps to support wide-field motion. We discovered a mode of neurogenesis where two sequential Notch-dependent divisions of either a horizontal or a vertical progenitor produce matching sets of two T4 and two T5 neurons retinotopically coincident with pairwise opposite direction selectivity. We show that retinotopy is an emergent characteristic of this neurogenic program and derives directly from neuronal birth order. Our work illustrates how simple developmental rules can implement complex neural organization. [Display omitted] •A neuroblast produces four neurons detecting two directions of bright or dark edge motion•Distinct progenitors produce neurons processing vertical versus horizontal motion•Notch specifies neurons responding to bright or dark edge motion•This mode of neurogenesis establishes retinotopy in the fly global motion system The circuit for motion perception emerges out of the developmental program that specifies the identity of neurons.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2018.02.053</identifier><identifier>PMID: 29576455</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; brain ; direction selective neurons ; Drosophila ; Drosophila - physiology ; Drosophila Proteins - metabolism ; Life Sciences ; Locomotion - physiology ; Models, Neurological ; Motion Perception - physiology ; neural connectivity ; neural development ; neurogenesis ; neurons ; Neurons - physiology ; Notch ; ommatidia ; optic lobe ; Optic Lobe, Nonmammalian - chemistry ; Optic Lobe, Nonmammalian - metabolism ; pattern formation ; Receptors, Notch - metabolism ; Retina - cytology ; Retina - physiology ; retinotopy ; Visual Pathways</subject><ispartof>Cell, 2018-04, Vol.173 (2), p.485-498.e11</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-fa175f24ea5782e56800eae3c48ee388b39961eaf05ca48bce961331cee21ed13</citedby><cites>FETCH-LOGICAL-c522t-fa175f24ea5782e56800eae3c48ee388b39961eaf05ca48bce961331cee21ed13</cites><orcidid>0000-0002-6914-1413 ; 0000-0002-6042-9875 ; 0000-0002-9960-0035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867418302307$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29576455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02095708$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinto-Teixeira, Filipe</creatorcontrib><creatorcontrib>Koo, Clara</creatorcontrib><creatorcontrib>Rossi, Anthony Michael</creatorcontrib><creatorcontrib>Neriec, Nathalie</creatorcontrib><creatorcontrib>Bertet, Claire</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Del-Valle-Rodriguez, Alberto</creatorcontrib><creatorcontrib>Desplan, Claude</creatorcontrib><title>Development of Concurrent Retinotopic Maps in the Fly Motion Detection Circuit</title><title>Cell</title><addtitle>Cell</addtitle><description>Understanding how complex brain wiring is produced during development is a daunting challenge. In Drosophila, information from 800 retinal ommatidia is processed in distinct brain neuropiles, each subdivided into 800 matching retinotopic columns. The lobula plate comprises four T4 and four T5 neuronal subtypes. T4 neurons respond to bright edge motion, whereas T5 neurons respond to dark edge motion. Each is tuned to motion in one of the four cardinal directions, effectively establishing eight concurrent retinotopic maps to support wide-field motion. We discovered a mode of neurogenesis where two sequential Notch-dependent divisions of either a horizontal or a vertical progenitor produce matching sets of two T4 and two T5 neurons retinotopically coincident with pairwise opposite direction selectivity. We show that retinotopy is an emergent characteristic of this neurogenic program and derives directly from neuronal birth order. Our work illustrates how simple developmental rules can implement complex neural organization. [Display omitted] •A neuroblast produces four neurons detecting two directions of bright or dark edge motion•Distinct progenitors produce neurons processing vertical versus horizontal motion•Notch specifies neurons responding to bright or dark edge motion•This mode of neurogenesis establishes retinotopy in the fly global motion system The circuit for motion perception emerges out of the developmental program that specifies the identity of neurons.</description><subject>Animals</subject><subject>brain</subject><subject>direction selective neurons</subject><subject>Drosophila</subject><subject>Drosophila - physiology</subject><subject>Drosophila Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Locomotion - physiology</subject><subject>Models, Neurological</subject><subject>Motion Perception - physiology</subject><subject>neural connectivity</subject><subject>neural development</subject><subject>neurogenesis</subject><subject>neurons</subject><subject>Neurons - physiology</subject><subject>Notch</subject><subject>ommatidia</subject><subject>optic lobe</subject><subject>Optic Lobe, Nonmammalian - chemistry</subject><subject>Optic Lobe, Nonmammalian - metabolism</subject><subject>pattern formation</subject><subject>Receptors, Notch - metabolism</subject><subject>Retina - cytology</subject><subject>Retina - physiology</subject><subject>retinotopy</subject><subject>Visual Pathways</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAQtRCILoU_wAHlSA8J46_EkRBStaUUaQsSgrPl9U5Yr7JxsJ2V-u9xum1FOcDJnvF7b57nEfKaQkWB1u92lcW-rxhQVQGrQPInZEGhbUpBG_aULABaVqq6ESfkRYw7AFBSyufkhLWyqYWUC_LlAg_Y-3GPQyp8Vyz9YKcQ5uobJjf45Edni2szxsINRdpicdnfFNc-OT8UF5jQ3t6WLtjJpZfkWWf6iK_uzlPy4_Lj9-VVufr66fPyfFVayVgqO0Mb2TGBRjaKoawVABrkVihErtSat21N0XQgrRFqbTGXnFOLyChuKD8lH46647Te48Zmv8H0egxub8KN9sbpxy-D2-qf_qClUi0XTRY4Owps_6Jdna_03AMGeUmgDvOwt3fDgv81YUx67-K8ejOgn6JmkgnGaSvF_6E5q7pmrYIMZUeoDT7GgN2DDQp6zlfv9My85WQ7OuebSW_-_PcD5T7QDHh_BGDe_sFh0NE6HCxuXMhR6Y13_9L_DbJUtsg</recordid><startdate>20180405</startdate><enddate>20180405</enddate><creator>Pinto-Teixeira, Filipe</creator><creator>Koo, Clara</creator><creator>Rossi, Anthony Michael</creator><creator>Neriec, Nathalie</creator><creator>Bertet, Claire</creator><creator>Li, Xin</creator><creator>Del-Valle-Rodriguez, Alberto</creator><creator>Desplan, Claude</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6914-1413</orcidid><orcidid>https://orcid.org/0000-0002-6042-9875</orcidid><orcidid>https://orcid.org/0000-0002-9960-0035</orcidid></search><sort><creationdate>20180405</creationdate><title>Development of Concurrent Retinotopic Maps in the Fly Motion Detection Circuit</title><author>Pinto-Teixeira, Filipe ; Koo, Clara ; Rossi, Anthony Michael ; Neriec, Nathalie ; Bertet, Claire ; Li, Xin ; Del-Valle-Rodriguez, Alberto ; Desplan, Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-fa175f24ea5782e56800eae3c48ee388b39961eaf05ca48bce961331cee21ed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>brain</topic><topic>direction selective neurons</topic><topic>Drosophila</topic><topic>Drosophila - physiology</topic><topic>Drosophila Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Locomotion - physiology</topic><topic>Models, Neurological</topic><topic>Motion Perception - physiology</topic><topic>neural connectivity</topic><topic>neural development</topic><topic>neurogenesis</topic><topic>neurons</topic><topic>Neurons - physiology</topic><topic>Notch</topic><topic>ommatidia</topic><topic>optic lobe</topic><topic>Optic Lobe, Nonmammalian - chemistry</topic><topic>Optic Lobe, Nonmammalian - metabolism</topic><topic>pattern formation</topic><topic>Receptors, Notch - metabolism</topic><topic>Retina - cytology</topic><topic>Retina - physiology</topic><topic>retinotopy</topic><topic>Visual Pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinto-Teixeira, Filipe</creatorcontrib><creatorcontrib>Koo, Clara</creatorcontrib><creatorcontrib>Rossi, Anthony Michael</creatorcontrib><creatorcontrib>Neriec, Nathalie</creatorcontrib><creatorcontrib>Bertet, Claire</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Del-Valle-Rodriguez, Alberto</creatorcontrib><creatorcontrib>Desplan, Claude</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinto-Teixeira, Filipe</au><au>Koo, Clara</au><au>Rossi, Anthony Michael</au><au>Neriec, Nathalie</au><au>Bertet, Claire</au><au>Li, Xin</au><au>Del-Valle-Rodriguez, Alberto</au><au>Desplan, Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Concurrent Retinotopic Maps in the Fly Motion Detection Circuit</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2018-04-05</date><risdate>2018</risdate><volume>173</volume><issue>2</issue><spage>485</spage><epage>498.e11</epage><pages>485-498.e11</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Understanding how complex brain wiring is produced during development is a daunting challenge. In Drosophila, information from 800 retinal ommatidia is processed in distinct brain neuropiles, each subdivided into 800 matching retinotopic columns. The lobula plate comprises four T4 and four T5 neuronal subtypes. T4 neurons respond to bright edge motion, whereas T5 neurons respond to dark edge motion. Each is tuned to motion in one of the four cardinal directions, effectively establishing eight concurrent retinotopic maps to support wide-field motion. We discovered a mode of neurogenesis where two sequential Notch-dependent divisions of either a horizontal or a vertical progenitor produce matching sets of two T4 and two T5 neurons retinotopically coincident with pairwise opposite direction selectivity. We show that retinotopy is an emergent characteristic of this neurogenic program and derives directly from neuronal birth order. Our work illustrates how simple developmental rules can implement complex neural organization. [Display omitted] •A neuroblast produces four neurons detecting two directions of bright or dark edge motion•Distinct progenitors produce neurons processing vertical versus horizontal motion•Notch specifies neurons responding to bright or dark edge motion•This mode of neurogenesis establishes retinotopy in the fly global motion system The circuit for motion perception emerges out of the developmental program that specifies the identity of neurons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29576455</pmid><doi>10.1016/j.cell.2018.02.053</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6914-1413</orcidid><orcidid>https://orcid.org/0000-0002-6042-9875</orcidid><orcidid>https://orcid.org/0000-0002-9960-0035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2018-04, Vol.173 (2), p.485-498.e11
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889347
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
brain
direction selective neurons
Drosophila
Drosophila - physiology
Drosophila Proteins - metabolism
Life Sciences
Locomotion - physiology
Models, Neurological
Motion Perception - physiology
neural connectivity
neural development
neurogenesis
neurons
Neurons - physiology
Notch
ommatidia
optic lobe
Optic Lobe, Nonmammalian - chemistry
Optic Lobe, Nonmammalian - metabolism
pattern formation
Receptors, Notch - metabolism
Retina - cytology
Retina - physiology
retinotopy
Visual Pathways
title Development of Concurrent Retinotopic Maps in the Fly Motion Detection Circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Concurrent%20Retinotopic%20Maps%20in%20the%20Fly%20Motion%20Detection%20Circuit&rft.jtitle=Cell&rft.au=Pinto-Teixeira,%20Filipe&rft.date=2018-04-05&rft.volume=173&rft.issue=2&rft.spage=485&rft.epage=498.e11&rft.pages=485-498.e11&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2018.02.053&rft_dat=%3Cproquest_pubme%3E2018662980%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2018662980&rft_id=info:pmid/29576455&rft_els_id=S0092867418302307&rfr_iscdi=true