Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis
BAT‐controlled thermogenic activity is thought to be required for its capacity to prevent the development of insulin resistance. This hypothesis predicts that mediators of thermogenesis may help prevent diet‐induced insulin resistance. We report that the mitochondrial fusion protein Mitofusin 2 (Mfn...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2017-07, Vol.18 (7), p.1123-1138 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1138 |
---|---|
container_issue | 7 |
container_start_page | 1123 |
container_title | EMBO reports |
container_volume | 18 |
creator | Mahdaviani, Kiana Benador, Ilan Y Su, Shi Gharakhanian, Raffi A Stiles, Linsey Trudeau, Kyle M Cardamone, Maria Enríquez‐Zarralanga, Violeta Ritou, Eleni Aprahamian, Tamar Oliveira, Marcus F Corkey, Barbara E Perissi, Valentina Liesa, Marc Shirihai, Orian S |
description | BAT‐controlled thermogenic activity is thought to be required for its capacity to prevent the development of insulin resistance. This hypothesis predicts that mediators of thermogenesis may help prevent diet‐induced insulin resistance. We report that the mitochondrial fusion protein Mitofusin 2 (Mfn2) in BAT is essential for cold‐stimulated thermogenesis, but promotes insulin resistance in obese mice. Mfn2 deletion in mice through Ucp1‐cre (BAT‐Mfn2‐KO) causes BAT lipohypertrophy and cold intolerance. Surprisingly however, deletion of Mfn2 in mice fed a high fat diet (HFD) results in improved insulin sensitivity and resistance to obesity, while impaired cold‐stimulated thermogenesis is maintained. Improvement in insulin sensitivity is associated with a gender‐specific remodeling of BAT mitochondrial function. In females, BAT mitochondria increase their efficiency for ATP‐synthesizing fat oxidation, whereas in BAT from males, complex I‐driven respiration is decreased and glycolytic capacity is increased. Thus, BAT adaptation to obesity is regulated by Mfn2 and with BAT‐Mfn2 absent, BAT contribution to prevention of insulin resistance is independent and inversely correlated to whole‐body cold‐stimulated thermogenesis.
Synopsis
Deletion of Mfn2 in BAT improves glucose tolerance under high fat diet while impairing cold‐induced thermogenesis. Therefore, BAT therapeutic potential to improve insulin sensitivity may be achieved independently of thermogenesis.
Mfn2 in BAT is required to sustain body temperature after cold‐exposure.
Mfn2 deletion in BAT protects from obesity‐induced insulin resistance and increases whole body lipid oxidation.
In obesity, Mfn2 deletion in BAT promotes a gender‐specific remodeling of BAT mitochondria and metabolism to increase ATP synthesis capacity.
Graphical Abstract
Deletion of Mfn2 in BAT improves glucose tolerance under high fat diet while impairing cold‐induced thermogenesis. Therefore, BAT therapeutic potential to improve insulin sensitivity may be achieved independently of thermogenesis. |
doi_str_mv | 10.15252/embr.201643827 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5887905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902481769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5797-526e0ed924ba4954e76607fa66920905f300d553ee82fde7fa1cd6bb7ad41e4b3</originalsourceid><addsrcrecordid>eNqFkc1rFTEUxUNR-qXr7iTgppvXJpl8TFwItrQqtAii4C7NTO68pswkYzLT0v--qe_5eAriKhfu75ycy0HoiJITKphgpzA06YQRKnlVM7WD9imXelFRVb9Yz4zRH3voIOc7QojQqt5Fe6wWla402Uc3111g2EEPk48B-4CbFB8Cts6PMQOefM4z4DHFCdop4y7FoVB57guaIPs82dACtsFhP4zWp4ynW0hDXEJ4Xr9CLzvbZ3i9fg_R98uLb-efFldfPn4-_3C1aIXSaiGYBAJOM95YrgUHJSVRnZVSM6KJ6CpCnBAVQM06B2VDWyebRlnHKfCmOkTvV77j3AzgWghTsr0Zkx9sejTRevPnJvhbs4z3RtS1Kh8Ug-O1QYo_Z8iTGXxuoe9tgDhnQzVhvKZK6oK-_Qu9i3MK5bxClV644oQX6nRFtSnmnKDbhKHE_GrPPLdnNu0VxZvtGzb877oK8G4FPPgeHv_nZy6uz75uu5OVOBddWELaSv2PQE9DN7ku</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915247404</pqid></control><display><type>article</type><title>Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Mahdaviani, Kiana ; Benador, Ilan Y ; Su, Shi ; Gharakhanian, Raffi A ; Stiles, Linsey ; Trudeau, Kyle M ; Cardamone, Maria ; Enríquez‐Zarralanga, Violeta ; Ritou, Eleni ; Aprahamian, Tamar ; Oliveira, Marcus F ; Corkey, Barbara E ; Perissi, Valentina ; Liesa, Marc ; Shirihai, Orian S</creator><creatorcontrib>Mahdaviani, Kiana ; Benador, Ilan Y ; Su, Shi ; Gharakhanian, Raffi A ; Stiles, Linsey ; Trudeau, Kyle M ; Cardamone, Maria ; Enríquez‐Zarralanga, Violeta ; Ritou, Eleni ; Aprahamian, Tamar ; Oliveira, Marcus F ; Corkey, Barbara E ; Perissi, Valentina ; Liesa, Marc ; Shirihai, Orian S</creatorcontrib><description>BAT‐controlled thermogenic activity is thought to be required for its capacity to prevent the development of insulin resistance. This hypothesis predicts that mediators of thermogenesis may help prevent diet‐induced insulin resistance. We report that the mitochondrial fusion protein Mitofusin 2 (Mfn2) in BAT is essential for cold‐stimulated thermogenesis, but promotes insulin resistance in obese mice. Mfn2 deletion in mice through Ucp1‐cre (BAT‐Mfn2‐KO) causes BAT lipohypertrophy and cold intolerance. Surprisingly however, deletion of Mfn2 in mice fed a high fat diet (HFD) results in improved insulin sensitivity and resistance to obesity, while impaired cold‐stimulated thermogenesis is maintained. Improvement in insulin sensitivity is associated with a gender‐specific remodeling of BAT mitochondrial function. In females, BAT mitochondria increase their efficiency for ATP‐synthesizing fat oxidation, whereas in BAT from males, complex I‐driven respiration is decreased and glycolytic capacity is increased. Thus, BAT adaptation to obesity is regulated by Mfn2 and with BAT‐Mfn2 absent, BAT contribution to prevention of insulin resistance is independent and inversely correlated to whole‐body cold‐stimulated thermogenesis.
Synopsis
Deletion of Mfn2 in BAT improves glucose tolerance under high fat diet while impairing cold‐induced thermogenesis. Therefore, BAT therapeutic potential to improve insulin sensitivity may be achieved independently of thermogenesis.
Mfn2 in BAT is required to sustain body temperature after cold‐exposure.
Mfn2 deletion in BAT protects from obesity‐induced insulin resistance and increases whole body lipid oxidation.
In obesity, Mfn2 deletion in BAT promotes a gender‐specific remodeling of BAT mitochondria and metabolism to increase ATP synthesis capacity.
Graphical Abstract
Deletion of Mfn2 in BAT improves glucose tolerance under high fat diet while impairing cold‐induced thermogenesis. Therefore, BAT therapeutic potential to improve insulin sensitivity may be achieved independently of thermogenesis.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201643827</identifier><identifier>PMID: 28539390</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adaptation ; Adenosine triphosphatase ; Adipose tissue ; Adipose tissue (brown) ; Adipose Tissue, Brown - metabolism ; Animals ; Body temperature ; brown adipose tissue ; Cold tolerance ; Diet ; Diet, High-Fat ; EMBO20 ; EMBO21 ; Energy Metabolism ; Female ; Fusion protein ; Gender ; Glucose ; Glucose tolerance ; Glycolysis ; GTP Phosphohydrolases - deficiency ; GTP Phosphohydrolases - genetics ; High fat diet ; Insulin ; Insulin Resistance ; Intolerance ; Lipid peroxidation ; Low temperature resistance ; Male ; Metabolism ; Mice ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial Proteins - metabolism ; Mitofusin 2 ; Obesity ; Oxidation ; Oxidation resistance ; Respiration ; Sensitivity ; Temperature effects ; Temperature requirements ; Thermogenesis ; Thermogenesis - genetics</subject><ispartof>EMBO reports, 2017-07, Vol.18 (7), p.1123-1138</ispartof><rights>The Authors. Published under the terms of the CC BY 4.0 license 2017</rights><rights>2017 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2017 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2017 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5797-526e0ed924ba4954e76607fa66920905f300d553ee82fde7fa1cd6bb7ad41e4b3</citedby><cites>FETCH-LOGICAL-c5797-526e0ed924ba4954e76607fa66920905f300d553ee82fde7fa1cd6bb7ad41e4b3</cites><orcidid>0000-0001-8466-3431 ; 0000-0002-5909-8570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887905/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887905/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28539390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahdaviani, Kiana</creatorcontrib><creatorcontrib>Benador, Ilan Y</creatorcontrib><creatorcontrib>Su, Shi</creatorcontrib><creatorcontrib>Gharakhanian, Raffi A</creatorcontrib><creatorcontrib>Stiles, Linsey</creatorcontrib><creatorcontrib>Trudeau, Kyle M</creatorcontrib><creatorcontrib>Cardamone, Maria</creatorcontrib><creatorcontrib>Enríquez‐Zarralanga, Violeta</creatorcontrib><creatorcontrib>Ritou, Eleni</creatorcontrib><creatorcontrib>Aprahamian, Tamar</creatorcontrib><creatorcontrib>Oliveira, Marcus F</creatorcontrib><creatorcontrib>Corkey, Barbara E</creatorcontrib><creatorcontrib>Perissi, Valentina</creatorcontrib><creatorcontrib>Liesa, Marc</creatorcontrib><creatorcontrib>Shirihai, Orian S</creatorcontrib><title>Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>BAT‐controlled thermogenic activity is thought to be required for its capacity to prevent the development of insulin resistance. This hypothesis predicts that mediators of thermogenesis may help prevent diet‐induced insulin resistance. We report that the mitochondrial fusion protein Mitofusin 2 (Mfn2) in BAT is essential for cold‐stimulated thermogenesis, but promotes insulin resistance in obese mice. Mfn2 deletion in mice through Ucp1‐cre (BAT‐Mfn2‐KO) causes BAT lipohypertrophy and cold intolerance. Surprisingly however, deletion of Mfn2 in mice fed a high fat diet (HFD) results in improved insulin sensitivity and resistance to obesity, while impaired cold‐stimulated thermogenesis is maintained. Improvement in insulin sensitivity is associated with a gender‐specific remodeling of BAT mitochondrial function. In females, BAT mitochondria increase their efficiency for ATP‐synthesizing fat oxidation, whereas in BAT from males, complex I‐driven respiration is decreased and glycolytic capacity is increased. Thus, BAT adaptation to obesity is regulated by Mfn2 and with BAT‐Mfn2 absent, BAT contribution to prevention of insulin resistance is independent and inversely correlated to whole‐body cold‐stimulated thermogenesis.
Synopsis
Deletion of Mfn2 in BAT improves glucose tolerance under high fat diet while impairing cold‐induced thermogenesis. Therefore, BAT therapeutic potential to improve insulin sensitivity may be achieved independently of thermogenesis.
Mfn2 in BAT is required to sustain body temperature after cold‐exposure.
Mfn2 deletion in BAT protects from obesity‐induced insulin resistance and increases whole body lipid oxidation.
In obesity, Mfn2 deletion in BAT promotes a gender‐specific remodeling of BAT mitochondria and metabolism to increase ATP synthesis capacity.
Graphical Abstract
Deletion of Mfn2 in BAT improves glucose tolerance under high fat diet while impairing cold‐induced thermogenesis. Therefore, BAT therapeutic potential to improve insulin sensitivity may be achieved independently of thermogenesis.</description><subject>Adaptation</subject><subject>Adenosine triphosphatase</subject><subject>Adipose tissue</subject><subject>Adipose tissue (brown)</subject><subject>Adipose Tissue, Brown - metabolism</subject><subject>Animals</subject><subject>Body temperature</subject><subject>brown adipose tissue</subject><subject>Cold tolerance</subject><subject>Diet</subject><subject>Diet, High-Fat</subject><subject>EMBO20</subject><subject>EMBO21</subject><subject>Energy Metabolism</subject><subject>Female</subject><subject>Fusion protein</subject><subject>Gender</subject><subject>Glucose</subject><subject>Glucose tolerance</subject><subject>Glycolysis</subject><subject>GTP Phosphohydrolases - deficiency</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>High fat diet</subject><subject>Insulin</subject><subject>Insulin Resistance</subject><subject>Intolerance</subject><subject>Lipid peroxidation</subject><subject>Low temperature resistance</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitofusin 2</subject><subject>Obesity</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Respiration</subject><subject>Sensitivity</subject><subject>Temperature effects</subject><subject>Temperature requirements</subject><subject>Thermogenesis</subject><subject>Thermogenesis - genetics</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1rFTEUxUNR-qXr7iTgppvXJpl8TFwItrQqtAii4C7NTO68pswkYzLT0v--qe_5eAriKhfu75ycy0HoiJITKphgpzA06YQRKnlVM7WD9imXelFRVb9Yz4zRH3voIOc7QojQqt5Fe6wWla402Uc3111g2EEPk48B-4CbFB8Cts6PMQOefM4z4DHFCdop4y7FoVB57guaIPs82dACtsFhP4zWp4ynW0hDXEJ4Xr9CLzvbZ3i9fg_R98uLb-efFldfPn4-_3C1aIXSaiGYBAJOM95YrgUHJSVRnZVSM6KJ6CpCnBAVQM06B2VDWyebRlnHKfCmOkTvV77j3AzgWghTsr0Zkx9sejTRevPnJvhbs4z3RtS1Kh8Ug-O1QYo_Z8iTGXxuoe9tgDhnQzVhvKZK6oK-_Qu9i3MK5bxClV644oQX6nRFtSnmnKDbhKHE_GrPPLdnNu0VxZvtGzb877oK8G4FPPgeHv_nZy6uz75uu5OVOBddWELaSv2PQE9DN7ku</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Mahdaviani, Kiana</creator><creator>Benador, Ilan Y</creator><creator>Su, Shi</creator><creator>Gharakhanian, Raffi A</creator><creator>Stiles, Linsey</creator><creator>Trudeau, Kyle M</creator><creator>Cardamone, Maria</creator><creator>Enríquez‐Zarralanga, Violeta</creator><creator>Ritou, Eleni</creator><creator>Aprahamian, Tamar</creator><creator>Oliveira, Marcus F</creator><creator>Corkey, Barbara E</creator><creator>Perissi, Valentina</creator><creator>Liesa, Marc</creator><creator>Shirihai, Orian S</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8466-3431</orcidid><orcidid>https://orcid.org/0000-0002-5909-8570</orcidid></search><sort><creationdate>201707</creationdate><title>Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis</title><author>Mahdaviani, Kiana ; Benador, Ilan Y ; Su, Shi ; Gharakhanian, Raffi A ; Stiles, Linsey ; Trudeau, Kyle M ; Cardamone, Maria ; Enríquez‐Zarralanga, Violeta ; Ritou, Eleni ; Aprahamian, Tamar ; Oliveira, Marcus F ; Corkey, Barbara E ; Perissi, Valentina ; Liesa, Marc ; Shirihai, Orian S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5797-526e0ed924ba4954e76607fa66920905f300d553ee82fde7fa1cd6bb7ad41e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Adenosine triphosphatase</topic><topic>Adipose tissue</topic><topic>Adipose tissue (brown)</topic><topic>Adipose Tissue, Brown - metabolism</topic><topic>Animals</topic><topic>Body temperature</topic><topic>brown adipose tissue</topic><topic>Cold tolerance</topic><topic>Diet</topic><topic>Diet, High-Fat</topic><topic>EMBO20</topic><topic>EMBO21</topic><topic>Energy Metabolism</topic><topic>Female</topic><topic>Fusion protein</topic><topic>Gender</topic><topic>Glucose</topic><topic>Glucose tolerance</topic><topic>Glycolysis</topic><topic>GTP Phosphohydrolases - deficiency</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>High fat diet</topic><topic>Insulin</topic><topic>Insulin Resistance</topic><topic>Intolerance</topic><topic>Lipid peroxidation</topic><topic>Low temperature resistance</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitofusin 2</topic><topic>Obesity</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Respiration</topic><topic>Sensitivity</topic><topic>Temperature effects</topic><topic>Temperature requirements</topic><topic>Thermogenesis</topic><topic>Thermogenesis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdaviani, Kiana</creatorcontrib><creatorcontrib>Benador, Ilan Y</creatorcontrib><creatorcontrib>Su, Shi</creatorcontrib><creatorcontrib>Gharakhanian, Raffi A</creatorcontrib><creatorcontrib>Stiles, Linsey</creatorcontrib><creatorcontrib>Trudeau, Kyle M</creatorcontrib><creatorcontrib>Cardamone, Maria</creatorcontrib><creatorcontrib>Enríquez‐Zarralanga, Violeta</creatorcontrib><creatorcontrib>Ritou, Eleni</creatorcontrib><creatorcontrib>Aprahamian, Tamar</creatorcontrib><creatorcontrib>Oliveira, Marcus F</creatorcontrib><creatorcontrib>Corkey, Barbara E</creatorcontrib><creatorcontrib>Perissi, Valentina</creatorcontrib><creatorcontrib>Liesa, Marc</creatorcontrib><creatorcontrib>Shirihai, Orian S</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdaviani, Kiana</au><au>Benador, Ilan Y</au><au>Su, Shi</au><au>Gharakhanian, Raffi A</au><au>Stiles, Linsey</au><au>Trudeau, Kyle M</au><au>Cardamone, Maria</au><au>Enríquez‐Zarralanga, Violeta</au><au>Ritou, Eleni</au><au>Aprahamian, Tamar</au><au>Oliveira, Marcus F</au><au>Corkey, Barbara E</au><au>Perissi, Valentina</au><au>Liesa, Marc</au><au>Shirihai, Orian S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2017-07</date><risdate>2017</risdate><volume>18</volume><issue>7</issue><spage>1123</spage><epage>1138</epage><pages>1123-1138</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>BAT‐controlled thermogenic activity is thought to be required for its capacity to prevent the development of insulin resistance. This hypothesis predicts that mediators of thermogenesis may help prevent diet‐induced insulin resistance. We report that the mitochondrial fusion protein Mitofusin 2 (Mfn2) in BAT is essential for cold‐stimulated thermogenesis, but promotes insulin resistance in obese mice. Mfn2 deletion in mice through Ucp1‐cre (BAT‐Mfn2‐KO) causes BAT lipohypertrophy and cold intolerance. Surprisingly however, deletion of Mfn2 in mice fed a high fat diet (HFD) results in improved insulin sensitivity and resistance to obesity, while impaired cold‐stimulated thermogenesis is maintained. Improvement in insulin sensitivity is associated with a gender‐specific remodeling of BAT mitochondrial function. In females, BAT mitochondria increase their efficiency for ATP‐synthesizing fat oxidation, whereas in BAT from males, complex I‐driven respiration is decreased and glycolytic capacity is increased. Thus, BAT adaptation to obesity is regulated by Mfn2 and with BAT‐Mfn2 absent, BAT contribution to prevention of insulin resistance is independent and inversely correlated to whole‐body cold‐stimulated thermogenesis.
Synopsis
Deletion of Mfn2 in BAT improves glucose tolerance under high fat diet while impairing cold‐induced thermogenesis. Therefore, BAT therapeutic potential to improve insulin sensitivity may be achieved independently of thermogenesis.
Mfn2 in BAT is required to sustain body temperature after cold‐exposure.
Mfn2 deletion in BAT protects from obesity‐induced insulin resistance and increases whole body lipid oxidation.
In obesity, Mfn2 deletion in BAT promotes a gender‐specific remodeling of BAT mitochondria and metabolism to increase ATP synthesis capacity.
Graphical Abstract
Deletion of Mfn2 in BAT improves glucose tolerance under high fat diet while impairing cold‐induced thermogenesis. Therefore, BAT therapeutic potential to improve insulin sensitivity may be achieved independently of thermogenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28539390</pmid><doi>10.15252/embr.201643827</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8466-3431</orcidid><orcidid>https://orcid.org/0000-0002-5909-8570</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2017-07, Vol.18 (7), p.1123-1138 |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5887905 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals |
subjects | Adaptation Adenosine triphosphatase Adipose tissue Adipose tissue (brown) Adipose Tissue, Brown - metabolism Animals Body temperature brown adipose tissue Cold tolerance Diet Diet, High-Fat EMBO20 EMBO21 Energy Metabolism Female Fusion protein Gender Glucose Glucose tolerance Glycolysis GTP Phosphohydrolases - deficiency GTP Phosphohydrolases - genetics High fat diet Insulin Insulin Resistance Intolerance Lipid peroxidation Low temperature resistance Male Metabolism Mice Mitochondria Mitochondria - metabolism Mitochondrial Proteins - metabolism Mitofusin 2 Obesity Oxidation Oxidation resistance Respiration Sensitivity Temperature effects Temperature requirements Thermogenesis Thermogenesis - genetics |
title | Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mfn2%20deletion%20in%20brown%20adipose%20tissue%20protects%20from%20insulin%20resistance%20and%20impairs%20thermogenesis&rft.jtitle=EMBO%20reports&rft.au=Mahdaviani,%20Kiana&rft.date=2017-07&rft.volume=18&rft.issue=7&rft.spage=1123&rft.epage=1138&rft.pages=1123-1138&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.201643827&rft_dat=%3Cproquest_pubme%3E1902481769%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915247404&rft_id=info:pmid/28539390&rfr_iscdi=true |