Assessment of Multivariate Neural Time Series by Phase Synchrony Clustering in a Time-Frequency-Topography Representation

Most EEG phase synchrony measures are of bivariate nature. Those that are multivariate focus on producing global indices of the synchronization state of the system. Thus, better descriptions of spatial and temporal local interactions are still in demand. A framework for characterization of phase syn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2018-01, Vol.2018 (2018), p.1-15
Hauptverfasser: Porta-Garcia, M. A., Yáñez-Suárez, Oscar, Valdés-Cristerna, Raquel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 2018
container_start_page 1
container_title Computational intelligence and neuroscience
container_volume 2018
creator Porta-Garcia, M. A.
Yáñez-Suárez, Oscar
Valdés-Cristerna, Raquel
description Most EEG phase synchrony measures are of bivariate nature. Those that are multivariate focus on producing global indices of the synchronization state of the system. Thus, better descriptions of spatial and temporal local interactions are still in demand. A framework for characterization of phase synchrony relationships between multivariate neural time series is presented, applied either in a single epoch or over an intertrial assessment, relying on a proposed clustering algorithm, termed Multivariate Time Series Clustering by Phase Synchrony, which generates fuzzy clusters for each multivalued time sample and thereupon obtains hard clusters according to a circular variance threshold; such cluster modes are then depicted in Time-Frequency-Topography representations of synchrony state beyond mere global indices. EEG signals from P300 Speller sessions of four subjects were analyzed, obtaining useful insights of synchrony patterns related to the ERP and even revealing steady-state artifacts at 7.6 Hz. Further, contrast maps of Levenshtein Distance highlight synchrony differences between ERP and no-ERP epochs, mainly at delta and theta bands. The framework, which is not limited to one synchrony measure, allows observing dynamics of phase changes and interactions among channels and can be applied to analyze other cognitive states rather than ERP versus no ERP.
doi_str_mv 10.1155/2018/2406909
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5884284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A585448369</galeid><sourcerecordid>A585448369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-72d0ae8b2c54f3ea46ae7b98c13152b3ee23fd3b61bc90748f394b41b6cb02543</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEoqWwY40ssUGioX7H2SCNRpQilYdgWFuO52biKrGndlKUf4-HGabAitX11f10jo9OUTwn-A0hQlxQTNQF5VjWuH5QnBKpqlLQij08vqU4KZ6kdIOxqASmj4sTWldCCIJPi3mREqQ0gB9RaNHHqR_dnYnOjIA-wRRNj1ZuAPQNooOEmhl96UzK--xtF4Of0bKf0pivfoOcR-YXXl5GuJ3A27lchW3YRLPtZvQVthFSdjKjC_5p8ag1fYJnh3lWfL98t1peldef339YLq5Ly4Ucy4qusQHVUCt4y8BwaaBqamUJI4I2DICyds0aSRpb44qrltW84aSRtsFUcHZWvN3rbqdmgLXN_jmV3kY3mDjrYJz---JdpzfhTgulOFU7gVcHgRhyqDTqwSULfW88hClpipmqMBGSZvTlP-hNmKLP8TJFMZe4ZvU9tTE9aOfbkH3tTlQvhBKcKyZ31PmesjGkFKE9fplgvWte75rXh-Yz_uLPmEf4d9UZeL0HOufX5of7TznIDLTmniYMS6bYT9BUwNI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020460939</pqid></control><display><type>article</type><title>Assessment of Multivariate Neural Time Series by Phase Synchrony Clustering in a Time-Frequency-Topography Representation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Porta-Garcia, M. A. ; Yáñez-Suárez, Oscar ; Valdés-Cristerna, Raquel</creator><contributor>de Albuquerque, Victor H. C. ; Victor H C de Albuquerque</contributor><creatorcontrib>Porta-Garcia, M. A. ; Yáñez-Suárez, Oscar ; Valdés-Cristerna, Raquel ; de Albuquerque, Victor H. C. ; Victor H C de Albuquerque</creatorcontrib><description>Most EEG phase synchrony measures are of bivariate nature. Those that are multivariate focus on producing global indices of the synchronization state of the system. Thus, better descriptions of spatial and temporal local interactions are still in demand. A framework for characterization of phase synchrony relationships between multivariate neural time series is presented, applied either in a single epoch or over an intertrial assessment, relying on a proposed clustering algorithm, termed Multivariate Time Series Clustering by Phase Synchrony, which generates fuzzy clusters for each multivalued time sample and thereupon obtains hard clusters according to a circular variance threshold; such cluster modes are then depicted in Time-Frequency-Topography representations of synchrony state beyond mere global indices. EEG signals from P300 Speller sessions of four subjects were analyzed, obtaining useful insights of synchrony patterns related to the ERP and even revealing steady-state artifacts at 7.6 Hz. Further, contrast maps of Levenshtein Distance highlight synchrony differences between ERP and no-ERP epochs, mainly at delta and theta bands. The framework, which is not limited to one synchrony measure, allows observing dynamics of phase changes and interactions among channels and can be applied to analyze other cognitive states rather than ERP versus no ERP.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2018/2406909</identifier><identifier>PMID: 29755510</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Analysis ; Bivariate analysis ; Cluster analysis ; Clustering ; Clustering (Computers) ; Clusters ; Cognitive ability ; Decomposition ; EEG ; Eigenvalues ; Electrodes ; Electroencephalography ; Event-related potentials ; Fourier transforms ; Fuzzy algorithms ; Fuzzy logic ; Fuzzy systems ; Methods ; Neurosciences ; Phase transitions ; Representations ; Synchronism ; Synchronization ; Time series ; Topography</subject><ispartof>Computational intelligence and neuroscience, 2018-01, Vol.2018 (2018), p.1-15</ispartof><rights>Copyright © 2018 M. A. Porta-Garcia et al.</rights><rights>COPYRIGHT 2018 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2018 M. A. Porta-Garcia et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2018 M. A. Porta-Garcia et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c456t-72d0ae8b2c54f3ea46ae7b98c13152b3ee23fd3b61bc90748f394b41b6cb02543</cites><orcidid>0000-0002-0173-1759 ; 0000-0002-4249-8877 ; 0000-0002-7524-5833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884284/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884284/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29755510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>de Albuquerque, Victor H. C.</contributor><contributor>Victor H C de Albuquerque</contributor><creatorcontrib>Porta-Garcia, M. A.</creatorcontrib><creatorcontrib>Yáñez-Suárez, Oscar</creatorcontrib><creatorcontrib>Valdés-Cristerna, Raquel</creatorcontrib><title>Assessment of Multivariate Neural Time Series by Phase Synchrony Clustering in a Time-Frequency-Topography Representation</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>Most EEG phase synchrony measures are of bivariate nature. Those that are multivariate focus on producing global indices of the synchronization state of the system. Thus, better descriptions of spatial and temporal local interactions are still in demand. A framework for characterization of phase synchrony relationships between multivariate neural time series is presented, applied either in a single epoch or over an intertrial assessment, relying on a proposed clustering algorithm, termed Multivariate Time Series Clustering by Phase Synchrony, which generates fuzzy clusters for each multivalued time sample and thereupon obtains hard clusters according to a circular variance threshold; such cluster modes are then depicted in Time-Frequency-Topography representations of synchrony state beyond mere global indices. EEG signals from P300 Speller sessions of four subjects were analyzed, obtaining useful insights of synchrony patterns related to the ERP and even revealing steady-state artifacts at 7.6 Hz. Further, contrast maps of Levenshtein Distance highlight synchrony differences between ERP and no-ERP epochs, mainly at delta and theta bands. The framework, which is not limited to one synchrony measure, allows observing dynamics of phase changes and interactions among channels and can be applied to analyze other cognitive states rather than ERP versus no ERP.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bivariate analysis</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering (Computers)</subject><subject>Clusters</subject><subject>Cognitive ability</subject><subject>Decomposition</subject><subject>EEG</subject><subject>Eigenvalues</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Event-related potentials</subject><subject>Fourier transforms</subject><subject>Fuzzy algorithms</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Methods</subject><subject>Neurosciences</subject><subject>Phase transitions</subject><subject>Representations</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Time series</subject><subject>Topography</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtv1DAUhSMEoqWwY40ssUGioX7H2SCNRpQilYdgWFuO52biKrGndlKUf4-HGabAitX11f10jo9OUTwn-A0hQlxQTNQF5VjWuH5QnBKpqlLQij08vqU4KZ6kdIOxqASmj4sTWldCCIJPi3mREqQ0gB9RaNHHqR_dnYnOjIA-wRRNj1ZuAPQNooOEmhl96UzK--xtF4Of0bKf0pivfoOcR-YXXl5GuJ3A27lchW3YRLPtZvQVthFSdjKjC_5p8ag1fYJnh3lWfL98t1peldef339YLq5Ly4Ucy4qusQHVUCt4y8BwaaBqamUJI4I2DICyds0aSRpb44qrltW84aSRtsFUcHZWvN3rbqdmgLXN_jmV3kY3mDjrYJz---JdpzfhTgulOFU7gVcHgRhyqDTqwSULfW88hClpipmqMBGSZvTlP-hNmKLP8TJFMZe4ZvU9tTE9aOfbkH3tTlQvhBKcKyZ31PmesjGkFKE9fplgvWte75rXh-Yz_uLPmEf4d9UZeL0HOufX5of7TznIDLTmniYMS6bYT9BUwNI</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Porta-Garcia, M. A.</creator><creator>Yáñez-Suárez, Oscar</creator><creator>Valdés-Cristerna, Raquel</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0173-1759</orcidid><orcidid>https://orcid.org/0000-0002-4249-8877</orcidid><orcidid>https://orcid.org/0000-0002-7524-5833</orcidid></search><sort><creationdate>20180101</creationdate><title>Assessment of Multivariate Neural Time Series by Phase Synchrony Clustering in a Time-Frequency-Topography Representation</title><author>Porta-Garcia, M. A. ; Yáñez-Suárez, Oscar ; Valdés-Cristerna, Raquel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-72d0ae8b2c54f3ea46ae7b98c13152b3ee23fd3b61bc90748f394b41b6cb02543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bivariate analysis</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering (Computers)</topic><topic>Clusters</topic><topic>Cognitive ability</topic><topic>Decomposition</topic><topic>EEG</topic><topic>Eigenvalues</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Event-related potentials</topic><topic>Fourier transforms</topic><topic>Fuzzy algorithms</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Methods</topic><topic>Neurosciences</topic><topic>Phase transitions</topic><topic>Representations</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Time series</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porta-Garcia, M. A.</creatorcontrib><creatorcontrib>Yáñez-Suárez, Oscar</creatorcontrib><creatorcontrib>Valdés-Cristerna, Raquel</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porta-Garcia, M. A.</au><au>Yáñez-Suárez, Oscar</au><au>Valdés-Cristerna, Raquel</au><au>de Albuquerque, Victor H. C.</au><au>Victor H C de Albuquerque</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Multivariate Neural Time Series by Phase Synchrony Clustering in a Time-Frequency-Topography Representation</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Most EEG phase synchrony measures are of bivariate nature. Those that are multivariate focus on producing global indices of the synchronization state of the system. Thus, better descriptions of spatial and temporal local interactions are still in demand. A framework for characterization of phase synchrony relationships between multivariate neural time series is presented, applied either in a single epoch or over an intertrial assessment, relying on a proposed clustering algorithm, termed Multivariate Time Series Clustering by Phase Synchrony, which generates fuzzy clusters for each multivalued time sample and thereupon obtains hard clusters according to a circular variance threshold; such cluster modes are then depicted in Time-Frequency-Topography representations of synchrony state beyond mere global indices. EEG signals from P300 Speller sessions of four subjects were analyzed, obtaining useful insights of synchrony patterns related to the ERP and even revealing steady-state artifacts at 7.6 Hz. Further, contrast maps of Levenshtein Distance highlight synchrony differences between ERP and no-ERP epochs, mainly at delta and theta bands. The framework, which is not limited to one synchrony measure, allows observing dynamics of phase changes and interactions among channels and can be applied to analyze other cognitive states rather than ERP versus no ERP.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29755510</pmid><doi>10.1155/2018/2406909</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0173-1759</orcidid><orcidid>https://orcid.org/0000-0002-4249-8877</orcidid><orcidid>https://orcid.org/0000-0002-7524-5833</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2018-01, Vol.2018 (2018), p.1-15
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5884284
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Analysis
Bivariate analysis
Cluster analysis
Clustering
Clustering (Computers)
Clusters
Cognitive ability
Decomposition
EEG
Eigenvalues
Electrodes
Electroencephalography
Event-related potentials
Fourier transforms
Fuzzy algorithms
Fuzzy logic
Fuzzy systems
Methods
Neurosciences
Phase transitions
Representations
Synchronism
Synchronization
Time series
Topography
title Assessment of Multivariate Neural Time Series by Phase Synchrony Clustering in a Time-Frequency-Topography Representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Multivariate%20Neural%20Time%20Series%20by%20Phase%20Synchrony%20Clustering%20in%20a%20Time-Frequency-Topography%20Representation&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Porta-Garcia,%20M.%20A.&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2018/2406909&rft_dat=%3Cgale_pubme%3EA585448369%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020460939&rft_id=info:pmid/29755510&rft_galeid=A585448369&rfr_iscdi=true