Lipidomics and Biomarker Discovery in Kidney Disease
Technological advances in mass spectrometry–based lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discov...
Gespeichert in:
Veröffentlicht in: | Seminars in nephrology 2018-03, Vol.38 (2), p.127-141 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | 2 |
container_start_page | 127 |
container_title | Seminars in nephrology |
container_volume | 38 |
creator | Afshinnia, Farsad Rajendiran, Thekkelnaycke M. Wernisch, Stefanie Soni, Tanu Jadoon, Adil Karnovsky, Alla Michailidis, George Pennathur, Subramaniam |
description | Technological advances in mass spectrometry–based lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discovery and gaining insight to molecular mechanisms of disease, especially when integrated with other -omics platforms (ie, transcriptomics, proteomics, and metabolomics) in the context of systems biology. In this review, we describe the workflow commonly applied to the conduct of lipidomic studies including important aspects of study design, sample preparation, biomarker identification and quantification, and data processing and analysis, as well as crucial considerations in clinical applications. We also review some recent studies of the application of lipidomic platforms that highlight the potential of lipid biomarkers and add to our understanding of the molecular basis of kidney disease. |
doi_str_mv | 10.1016/j.semnephrol.2018.01.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5881936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0270929518300044</els_id><sourcerecordid>2020492107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-8620f2b8b78211122fa2c71e9a111be10d7afb57c829080822b74e23fdc9c7803</originalsourceid><addsrcrecordid>eNqFkE1v2zAMhoVhw5p2-wuDj7vYJRnbki4D1nZfaIBd2rMgy_SqzLYyKQmQfz8F6brt1BNB8uVL8hGiQKgQsL1cV4mnmTcPMYwVAaoKsAKoX4gFNo0q61qpl2IBJKHUpJszcZ7SGoBQEr4WZ6RboKVuF6Je-Y3vw-RdKuzcF1c-TDb-5Fjc-OTCnuOh8HNx6_uZD8ca28RvxKvBjonfPsYLcf_5093113L1_cu364-r0tVSb0vVEgzUqU4qQkSiwZKTyNrmrGOEXtqha6RTpEGBIupkzbQceqedVLC8EB9OvptdN3HveN5GO5pN9PnGgwnWm_87s38wP8LeNEqhXrbZ4P2jQQy_dpy2Zspf8TjamcMuGQKCWhOCzFJ1kroYUoo8PK1BMEfoZm3-QjdH6AbQZOh59N2_Zz4N_qGcBVcnAWdYe8_RJOd5dtz7yG5r-uCf3_IbhwqYYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020492107</pqid></control><display><type>article</type><title>Lipidomics and Biomarker Discovery in Kidney Disease</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Afshinnia, Farsad ; Rajendiran, Thekkelnaycke M. ; Wernisch, Stefanie ; Soni, Tanu ; Jadoon, Adil ; Karnovsky, Alla ; Michailidis, George ; Pennathur, Subramaniam</creator><creatorcontrib>Afshinnia, Farsad ; Rajendiran, Thekkelnaycke M. ; Wernisch, Stefanie ; Soni, Tanu ; Jadoon, Adil ; Karnovsky, Alla ; Michailidis, George ; Pennathur, Subramaniam</creatorcontrib><description>Technological advances in mass spectrometry–based lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discovery and gaining insight to molecular mechanisms of disease, especially when integrated with other -omics platforms (ie, transcriptomics, proteomics, and metabolomics) in the context of systems biology. In this review, we describe the workflow commonly applied to the conduct of lipidomic studies including important aspects of study design, sample preparation, biomarker identification and quantification, and data processing and analysis, as well as crucial considerations in clinical applications. We also review some recent studies of the application of lipidomic platforms that highlight the potential of lipid biomarkers and add to our understanding of the molecular basis of kidney disease.</description><identifier>ISSN: 0270-9295</identifier><identifier>EISSN: 1558-4488</identifier><identifier>DOI: 10.1016/j.semnephrol.2018.01.004</identifier><identifier>PMID: 29602396</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Big Data ; biomarkers ; Biomarkers - analysis ; Biomarkers - metabolism ; Electronic Data Processing ; Humans ; Kidney Diseases - metabolism ; Lipid Metabolism ; Lipidomics ; Lipids - analysis ; mass spectrometry ; metabolomics ; Quality Control ; Statistics as Topic ; Workflow</subject><ispartof>Seminars in nephrology, 2018-03, Vol.38 (2), p.127-141</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-8620f2b8b78211122fa2c71e9a111be10d7afb57c829080822b74e23fdc9c7803</citedby><cites>FETCH-LOGICAL-c479t-8620f2b8b78211122fa2c71e9a111be10d7afb57c829080822b74e23fdc9c7803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0270929518300044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29602396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Afshinnia, Farsad</creatorcontrib><creatorcontrib>Rajendiran, Thekkelnaycke M.</creatorcontrib><creatorcontrib>Wernisch, Stefanie</creatorcontrib><creatorcontrib>Soni, Tanu</creatorcontrib><creatorcontrib>Jadoon, Adil</creatorcontrib><creatorcontrib>Karnovsky, Alla</creatorcontrib><creatorcontrib>Michailidis, George</creatorcontrib><creatorcontrib>Pennathur, Subramaniam</creatorcontrib><title>Lipidomics and Biomarker Discovery in Kidney Disease</title><title>Seminars in nephrology</title><addtitle>Semin Nephrol</addtitle><description>Technological advances in mass spectrometry–based lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discovery and gaining insight to molecular mechanisms of disease, especially when integrated with other -omics platforms (ie, transcriptomics, proteomics, and metabolomics) in the context of systems biology. In this review, we describe the workflow commonly applied to the conduct of lipidomic studies including important aspects of study design, sample preparation, biomarker identification and quantification, and data processing and analysis, as well as crucial considerations in clinical applications. We also review some recent studies of the application of lipidomic platforms that highlight the potential of lipid biomarkers and add to our understanding of the molecular basis of kidney disease.</description><subject>Big Data</subject><subject>biomarkers</subject><subject>Biomarkers - analysis</subject><subject>Biomarkers - metabolism</subject><subject>Electronic Data Processing</subject><subject>Humans</subject><subject>Kidney Diseases - metabolism</subject><subject>Lipid Metabolism</subject><subject>Lipidomics</subject><subject>Lipids - analysis</subject><subject>mass spectrometry</subject><subject>metabolomics</subject><subject>Quality Control</subject><subject>Statistics as Topic</subject><subject>Workflow</subject><issn>0270-9295</issn><issn>1558-4488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v2zAMhoVhw5p2-wuDj7vYJRnbki4D1nZfaIBd2rMgy_SqzLYyKQmQfz8F6brt1BNB8uVL8hGiQKgQsL1cV4mnmTcPMYwVAaoKsAKoX4gFNo0q61qpl2IBJKHUpJszcZ7SGoBQEr4WZ6RboKVuF6Je-Y3vw-RdKuzcF1c-TDb-5Fjc-OTCnuOh8HNx6_uZD8ca28RvxKvBjonfPsYLcf_5093113L1_cu364-r0tVSb0vVEgzUqU4qQkSiwZKTyNrmrGOEXtqha6RTpEGBIupkzbQceqedVLC8EB9OvptdN3HveN5GO5pN9PnGgwnWm_87s38wP8LeNEqhXrbZ4P2jQQy_dpy2Zspf8TjamcMuGQKCWhOCzFJ1kroYUoo8PK1BMEfoZm3-QjdH6AbQZOh59N2_Zz4N_qGcBVcnAWdYe8_RJOd5dtz7yG5r-uCf3_IbhwqYYw</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Afshinnia, Farsad</creator><creator>Rajendiran, Thekkelnaycke M.</creator><creator>Wernisch, Stefanie</creator><creator>Soni, Tanu</creator><creator>Jadoon, Adil</creator><creator>Karnovsky, Alla</creator><creator>Michailidis, George</creator><creator>Pennathur, Subramaniam</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201803</creationdate><title>Lipidomics and Biomarker Discovery in Kidney Disease</title><author>Afshinnia, Farsad ; Rajendiran, Thekkelnaycke M. ; Wernisch, Stefanie ; Soni, Tanu ; Jadoon, Adil ; Karnovsky, Alla ; Michailidis, George ; Pennathur, Subramaniam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-8620f2b8b78211122fa2c71e9a111be10d7afb57c829080822b74e23fdc9c7803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Big Data</topic><topic>biomarkers</topic><topic>Biomarkers - analysis</topic><topic>Biomarkers - metabolism</topic><topic>Electronic Data Processing</topic><topic>Humans</topic><topic>Kidney Diseases - metabolism</topic><topic>Lipid Metabolism</topic><topic>Lipidomics</topic><topic>Lipids - analysis</topic><topic>mass spectrometry</topic><topic>metabolomics</topic><topic>Quality Control</topic><topic>Statistics as Topic</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afshinnia, Farsad</creatorcontrib><creatorcontrib>Rajendiran, Thekkelnaycke M.</creatorcontrib><creatorcontrib>Wernisch, Stefanie</creatorcontrib><creatorcontrib>Soni, Tanu</creatorcontrib><creatorcontrib>Jadoon, Adil</creatorcontrib><creatorcontrib>Karnovsky, Alla</creatorcontrib><creatorcontrib>Michailidis, George</creatorcontrib><creatorcontrib>Pennathur, Subramaniam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Seminars in nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afshinnia, Farsad</au><au>Rajendiran, Thekkelnaycke M.</au><au>Wernisch, Stefanie</au><au>Soni, Tanu</au><au>Jadoon, Adil</au><au>Karnovsky, Alla</au><au>Michailidis, George</au><au>Pennathur, Subramaniam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipidomics and Biomarker Discovery in Kidney Disease</atitle><jtitle>Seminars in nephrology</jtitle><addtitle>Semin Nephrol</addtitle><date>2018-03</date><risdate>2018</risdate><volume>38</volume><issue>2</issue><spage>127</spage><epage>141</epage><pages>127-141</pages><issn>0270-9295</issn><eissn>1558-4488</eissn><abstract>Technological advances in mass spectrometry–based lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discovery and gaining insight to molecular mechanisms of disease, especially when integrated with other -omics platforms (ie, transcriptomics, proteomics, and metabolomics) in the context of systems biology. In this review, we describe the workflow commonly applied to the conduct of lipidomic studies including important aspects of study design, sample preparation, biomarker identification and quantification, and data processing and analysis, as well as crucial considerations in clinical applications. We also review some recent studies of the application of lipidomic platforms that highlight the potential of lipid biomarkers and add to our understanding of the molecular basis of kidney disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29602396</pmid><doi>10.1016/j.semnephrol.2018.01.004</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-9295 |
ispartof | Seminars in nephrology, 2018-03, Vol.38 (2), p.127-141 |
issn | 0270-9295 1558-4488 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5881936 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Big Data biomarkers Biomarkers - analysis Biomarkers - metabolism Electronic Data Processing Humans Kidney Diseases - metabolism Lipid Metabolism Lipidomics Lipids - analysis mass spectrometry metabolomics Quality Control Statistics as Topic Workflow |
title | Lipidomics and Biomarker Discovery in Kidney Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipidomics%20and%20Biomarker%20Discovery%20in%20Kidney%20Disease&rft.jtitle=Seminars%20in%20nephrology&rft.au=Afshinnia,%20Farsad&rft.date=2018-03&rft.volume=38&rft.issue=2&rft.spage=127&rft.epage=141&rft.pages=127-141&rft.issn=0270-9295&rft.eissn=1558-4488&rft_id=info:doi/10.1016/j.semnephrol.2018.01.004&rft_dat=%3Cproquest_pubme%3E2020492107%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020492107&rft_id=info:pmid/29602396&rft_els_id=S0270929518300044&rfr_iscdi=true |