Lipidomics and Biomarker Discovery in Kidney Disease

Technological advances in mass spectrometry–based lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in nephrology 2018-03, Vol.38 (2), p.127-141
Hauptverfasser: Afshinnia, Farsad, Rajendiran, Thekkelnaycke M., Wernisch, Stefanie, Soni, Tanu, Jadoon, Adil, Karnovsky, Alla, Michailidis, George, Pennathur, Subramaniam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 2
container_start_page 127
container_title Seminars in nephrology
container_volume 38
creator Afshinnia, Farsad
Rajendiran, Thekkelnaycke M.
Wernisch, Stefanie
Soni, Tanu
Jadoon, Adil
Karnovsky, Alla
Michailidis, George
Pennathur, Subramaniam
description Technological advances in mass spectrometry–based lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discovery and gaining insight to molecular mechanisms of disease, especially when integrated with other -omics platforms (ie, transcriptomics, proteomics, and metabolomics) in the context of systems biology. In this review, we describe the workflow commonly applied to the conduct of lipidomic studies including important aspects of study design, sample preparation, biomarker identification and quantification, and data processing and analysis, as well as crucial considerations in clinical applications. We also review some recent studies of the application of lipidomic platforms that highlight the potential of lipid biomarkers and add to our understanding of the molecular basis of kidney disease.
doi_str_mv 10.1016/j.semnephrol.2018.01.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5881936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0270929518300044</els_id><sourcerecordid>2020492107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-8620f2b8b78211122fa2c71e9a111be10d7afb57c829080822b74e23fdc9c7803</originalsourceid><addsrcrecordid>eNqFkE1v2zAMhoVhw5p2-wuDj7vYJRnbki4D1nZfaIBd2rMgy_SqzLYyKQmQfz8F6brt1BNB8uVL8hGiQKgQsL1cV4mnmTcPMYwVAaoKsAKoX4gFNo0q61qpl2IBJKHUpJszcZ7SGoBQEr4WZ6RboKVuF6Je-Y3vw-RdKuzcF1c-TDb-5Fjc-OTCnuOh8HNx6_uZD8ca28RvxKvBjonfPsYLcf_5093113L1_cu364-r0tVSb0vVEgzUqU4qQkSiwZKTyNrmrGOEXtqha6RTpEGBIupkzbQceqedVLC8EB9OvptdN3HveN5GO5pN9PnGgwnWm_87s38wP8LeNEqhXrbZ4P2jQQy_dpy2Zspf8TjamcMuGQKCWhOCzFJ1kroYUoo8PK1BMEfoZm3-QjdH6AbQZOh59N2_Zz4N_qGcBVcnAWdYe8_RJOd5dtz7yG5r-uCf3_IbhwqYYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020492107</pqid></control><display><type>article</type><title>Lipidomics and Biomarker Discovery in Kidney Disease</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Afshinnia, Farsad ; Rajendiran, Thekkelnaycke M. ; Wernisch, Stefanie ; Soni, Tanu ; Jadoon, Adil ; Karnovsky, Alla ; Michailidis, George ; Pennathur, Subramaniam</creator><creatorcontrib>Afshinnia, Farsad ; Rajendiran, Thekkelnaycke M. ; Wernisch, Stefanie ; Soni, Tanu ; Jadoon, Adil ; Karnovsky, Alla ; Michailidis, George ; Pennathur, Subramaniam</creatorcontrib><description>Technological advances in mass spectrometry–based lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discovery and gaining insight to molecular mechanisms of disease, especially when integrated with other -omics platforms (ie, transcriptomics, proteomics, and metabolomics) in the context of systems biology. In this review, we describe the workflow commonly applied to the conduct of lipidomic studies including important aspects of study design, sample preparation, biomarker identification and quantification, and data processing and analysis, as well as crucial considerations in clinical applications. We also review some recent studies of the application of lipidomic platforms that highlight the potential of lipid biomarkers and add to our understanding of the molecular basis of kidney disease.</description><identifier>ISSN: 0270-9295</identifier><identifier>EISSN: 1558-4488</identifier><identifier>DOI: 10.1016/j.semnephrol.2018.01.004</identifier><identifier>PMID: 29602396</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Big Data ; biomarkers ; Biomarkers - analysis ; Biomarkers - metabolism ; Electronic Data Processing ; Humans ; Kidney Diseases - metabolism ; Lipid Metabolism ; Lipidomics ; Lipids - analysis ; mass spectrometry ; metabolomics ; Quality Control ; Statistics as Topic ; Workflow</subject><ispartof>Seminars in nephrology, 2018-03, Vol.38 (2), p.127-141</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-8620f2b8b78211122fa2c71e9a111be10d7afb57c829080822b74e23fdc9c7803</citedby><cites>FETCH-LOGICAL-c479t-8620f2b8b78211122fa2c71e9a111be10d7afb57c829080822b74e23fdc9c7803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0270929518300044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29602396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Afshinnia, Farsad</creatorcontrib><creatorcontrib>Rajendiran, Thekkelnaycke M.</creatorcontrib><creatorcontrib>Wernisch, Stefanie</creatorcontrib><creatorcontrib>Soni, Tanu</creatorcontrib><creatorcontrib>Jadoon, Adil</creatorcontrib><creatorcontrib>Karnovsky, Alla</creatorcontrib><creatorcontrib>Michailidis, George</creatorcontrib><creatorcontrib>Pennathur, Subramaniam</creatorcontrib><title>Lipidomics and Biomarker Discovery in Kidney Disease</title><title>Seminars in nephrology</title><addtitle>Semin Nephrol</addtitle><description>Technological advances in mass spectrometry–based lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discovery and gaining insight to molecular mechanisms of disease, especially when integrated with other -omics platforms (ie, transcriptomics, proteomics, and metabolomics) in the context of systems biology. In this review, we describe the workflow commonly applied to the conduct of lipidomic studies including important aspects of study design, sample preparation, biomarker identification and quantification, and data processing and analysis, as well as crucial considerations in clinical applications. We also review some recent studies of the application of lipidomic platforms that highlight the potential of lipid biomarkers and add to our understanding of the molecular basis of kidney disease.</description><subject>Big Data</subject><subject>biomarkers</subject><subject>Biomarkers - analysis</subject><subject>Biomarkers - metabolism</subject><subject>Electronic Data Processing</subject><subject>Humans</subject><subject>Kidney Diseases - metabolism</subject><subject>Lipid Metabolism</subject><subject>Lipidomics</subject><subject>Lipids - analysis</subject><subject>mass spectrometry</subject><subject>metabolomics</subject><subject>Quality Control</subject><subject>Statistics as Topic</subject><subject>Workflow</subject><issn>0270-9295</issn><issn>1558-4488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v2zAMhoVhw5p2-wuDj7vYJRnbki4D1nZfaIBd2rMgy_SqzLYyKQmQfz8F6brt1BNB8uVL8hGiQKgQsL1cV4mnmTcPMYwVAaoKsAKoX4gFNo0q61qpl2IBJKHUpJszcZ7SGoBQEr4WZ6RboKVuF6Je-Y3vw-RdKuzcF1c-TDb-5Fjc-OTCnuOh8HNx6_uZD8ca28RvxKvBjonfPsYLcf_5093113L1_cu364-r0tVSb0vVEgzUqU4qQkSiwZKTyNrmrGOEXtqha6RTpEGBIupkzbQceqedVLC8EB9OvptdN3HveN5GO5pN9PnGgwnWm_87s38wP8LeNEqhXrbZ4P2jQQy_dpy2Zspf8TjamcMuGQKCWhOCzFJ1kroYUoo8PK1BMEfoZm3-QjdH6AbQZOh59N2_Zz4N_qGcBVcnAWdYe8_RJOd5dtz7yG5r-uCf3_IbhwqYYw</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Afshinnia, Farsad</creator><creator>Rajendiran, Thekkelnaycke M.</creator><creator>Wernisch, Stefanie</creator><creator>Soni, Tanu</creator><creator>Jadoon, Adil</creator><creator>Karnovsky, Alla</creator><creator>Michailidis, George</creator><creator>Pennathur, Subramaniam</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201803</creationdate><title>Lipidomics and Biomarker Discovery in Kidney Disease</title><author>Afshinnia, Farsad ; Rajendiran, Thekkelnaycke M. ; Wernisch, Stefanie ; Soni, Tanu ; Jadoon, Adil ; Karnovsky, Alla ; Michailidis, George ; Pennathur, Subramaniam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-8620f2b8b78211122fa2c71e9a111be10d7afb57c829080822b74e23fdc9c7803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Big Data</topic><topic>biomarkers</topic><topic>Biomarkers - analysis</topic><topic>Biomarkers - metabolism</topic><topic>Electronic Data Processing</topic><topic>Humans</topic><topic>Kidney Diseases - metabolism</topic><topic>Lipid Metabolism</topic><topic>Lipidomics</topic><topic>Lipids - analysis</topic><topic>mass spectrometry</topic><topic>metabolomics</topic><topic>Quality Control</topic><topic>Statistics as Topic</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afshinnia, Farsad</creatorcontrib><creatorcontrib>Rajendiran, Thekkelnaycke M.</creatorcontrib><creatorcontrib>Wernisch, Stefanie</creatorcontrib><creatorcontrib>Soni, Tanu</creatorcontrib><creatorcontrib>Jadoon, Adil</creatorcontrib><creatorcontrib>Karnovsky, Alla</creatorcontrib><creatorcontrib>Michailidis, George</creatorcontrib><creatorcontrib>Pennathur, Subramaniam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Seminars in nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afshinnia, Farsad</au><au>Rajendiran, Thekkelnaycke M.</au><au>Wernisch, Stefanie</au><au>Soni, Tanu</au><au>Jadoon, Adil</au><au>Karnovsky, Alla</au><au>Michailidis, George</au><au>Pennathur, Subramaniam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipidomics and Biomarker Discovery in Kidney Disease</atitle><jtitle>Seminars in nephrology</jtitle><addtitle>Semin Nephrol</addtitle><date>2018-03</date><risdate>2018</risdate><volume>38</volume><issue>2</issue><spage>127</spage><epage>141</epage><pages>127-141</pages><issn>0270-9295</issn><eissn>1558-4488</eissn><abstract>Technological advances in mass spectrometry–based lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discovery and gaining insight to molecular mechanisms of disease, especially when integrated with other -omics platforms (ie, transcriptomics, proteomics, and metabolomics) in the context of systems biology. In this review, we describe the workflow commonly applied to the conduct of lipidomic studies including important aspects of study design, sample preparation, biomarker identification and quantification, and data processing and analysis, as well as crucial considerations in clinical applications. We also review some recent studies of the application of lipidomic platforms that highlight the potential of lipid biomarkers and add to our understanding of the molecular basis of kidney disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29602396</pmid><doi>10.1016/j.semnephrol.2018.01.004</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-9295
ispartof Seminars in nephrology, 2018-03, Vol.38 (2), p.127-141
issn 0270-9295
1558-4488
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5881936
source MEDLINE; Elsevier ScienceDirect Journals
subjects Big Data
biomarkers
Biomarkers - analysis
Biomarkers - metabolism
Electronic Data Processing
Humans
Kidney Diseases - metabolism
Lipid Metabolism
Lipidomics
Lipids - analysis
mass spectrometry
metabolomics
Quality Control
Statistics as Topic
Workflow
title Lipidomics and Biomarker Discovery in Kidney Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipidomics%20and%20Biomarker%20Discovery%20in%20Kidney%20Disease&rft.jtitle=Seminars%20in%20nephrology&rft.au=Afshinnia,%20Farsad&rft.date=2018-03&rft.volume=38&rft.issue=2&rft.spage=127&rft.epage=141&rft.pages=127-141&rft.issn=0270-9295&rft.eissn=1558-4488&rft_id=info:doi/10.1016/j.semnephrol.2018.01.004&rft_dat=%3Cproquest_pubme%3E2020492107%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020492107&rft_id=info:pmid/29602396&rft_els_id=S0270929518300044&rfr_iscdi=true