4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses
Despite remarkable responses to cancer immunotherapy in a subset of patients, many patients remain resistant to these therapies. The tumor microenvironment can impose metabolic restrictions on T cell function, creating a resistance mechanism to immunotherapy. We have previously shown tumor-infiltrat...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 2018-04, Vol.215 (4), p.1091-1100 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1100 |
---|---|
container_issue | 4 |
container_start_page | 1091 |
container_title | The Journal of experimental medicine |
container_volume | 215 |
creator | Menk, Ashley V Scharping, Nicole E Rivadeneira, Dayana B Calderon, Michael J Watson, McLane J Dunstane, Deanna Watkins, Simon C Delgoffe, Greg M |
description | Despite remarkable responses to cancer immunotherapy in a subset of patients, many patients remain resistant to these therapies. The tumor microenvironment can impose metabolic restrictions on T cell function, creating a resistance mechanism to immunotherapy. We have previously shown tumor-infiltrating T cells succumb to progressive loss of metabolic sufficiency, characterized by repression of mitochondrial activity that cannot be rescued by PD-1 blockade. 4-1BB, a costimulatory molecule highly expressed on exhausted T cells, has been shown to influence metabolic function. We hypothesized that 4-1BB signaling might provide metabolic support to tumor-infiltrating T cells. 4-1BB costimulation of CD8
T cells results in enhanced mitochondrial capacity (suggestive of fusion) and engages PGC1α-mediated pathways via activation of p38-MAPK. 4-1BB treatment of mice improves metabolic sufficiency in endogenous and adoptive therapeutic CD8
T cells. 4-1BB stimulation combined with PD-1 blockade results in robust antitumor immunity. Sequenced studies revealed the metabolic support afforded by 4-1BB agonism need not be continuous and that a short course of anti-4-1BB pretreatment was sufficient to provide a synergistic response. Our studies highlight metabolic reprogramming as the dominant effect of 4-1BB therapy and suggest that combinatorial strategies using 4-1BB agonism may help overcome the immunosuppressive metabolic landscape of the tumor microenvironment. |
doi_str_mv | 10.1084/jem.20171068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5881463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011614064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-82c1262d9e92e4b937d8a81507f8d297f25c0048dab5ae6c81a7e0b31c6814213</originalsourceid><addsrcrecordid>eNpd0ctv1DAQBnALgehSuHFGlrhwIK3HcRzngkQrXlKlXsrZcpzJrleJvfiB1P--XvoQcPLBP32amY-Qt8DOgClxvsf1jDPogUn1jGygE6wZulY9JxvGOG-Asf6EvEppzxgI0cmX5IQPHVQvNySLBi4uqA0pu7UsJrvgqfNTsZjoDbW4LHR1Odhd8FN0ZqFz8faPMn6iowtb9JhcoujNuDi_pdZ4i5G6dS0-5B1Gc8CSnaUR0yH4hOk1eTGbJeGbh_eU_Pz65ebye3N1_e3H5eerxgrguVHcApd8GnDgKMah7SdlFHSsn9XEh37mnWVMqMmMnUFpFZge2diClQoEh_aUfLrPPZRxxcmiz9Es-hDdauKtDsbpf3-82-lt-K07VQNkWwM-PATE8Ktgynp16XgT4zGUpOvdQYJgUlT6_j-6DyX6ul5VnIm-5-qoPt4rG0NKEeenYYDpY5261qkf66z83d8LPOHH_to7URadAg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020477284</pqid></control><display><type>article</type><title>4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Menk, Ashley V ; Scharping, Nicole E ; Rivadeneira, Dayana B ; Calderon, Michael J ; Watson, McLane J ; Dunstane, Deanna ; Watkins, Simon C ; Delgoffe, Greg M</creator><creatorcontrib>Menk, Ashley V ; Scharping, Nicole E ; Rivadeneira, Dayana B ; Calderon, Michael J ; Watson, McLane J ; Dunstane, Deanna ; Watkins, Simon C ; Delgoffe, Greg M</creatorcontrib><description>Despite remarkable responses to cancer immunotherapy in a subset of patients, many patients remain resistant to these therapies. The tumor microenvironment can impose metabolic restrictions on T cell function, creating a resistance mechanism to immunotherapy. We have previously shown tumor-infiltrating T cells succumb to progressive loss of metabolic sufficiency, characterized by repression of mitochondrial activity that cannot be rescued by PD-1 blockade. 4-1BB, a costimulatory molecule highly expressed on exhausted T cells, has been shown to influence metabolic function. We hypothesized that 4-1BB signaling might provide metabolic support to tumor-infiltrating T cells. 4-1BB costimulation of CD8
T cells results in enhanced mitochondrial capacity (suggestive of fusion) and engages PGC1α-mediated pathways via activation of p38-MAPK. 4-1BB treatment of mice improves metabolic sufficiency in endogenous and adoptive therapeutic CD8
T cells. 4-1BB stimulation combined with PD-1 blockade results in robust antitumor immunity. Sequenced studies revealed the metabolic support afforded by 4-1BB agonism need not be continuous and that a short course of anti-4-1BB pretreatment was sufficient to provide a synergistic response. Our studies highlight metabolic reprogramming as the dominant effect of 4-1BB therapy and suggest that combinatorial strategies using 4-1BB agonism may help overcome the immunosuppressive metabolic landscape of the tumor microenvironment.</description><identifier>ISSN: 0022-1007</identifier><identifier>EISSN: 1540-9538</identifier><identifier>DOI: 10.1084/jem.20171068</identifier><identifier>PMID: 29511066</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animals ; Antibodies - pharmacology ; Cancer ; Cancer immunotherapy ; CD8 antigen ; Combinatorial analysis ; Immunity ; Immunosuppression ; Immunotherapy ; Lymphocytes ; Lymphocytes T ; MAP kinase ; Melanoma, Experimental - immunology ; Melanoma, Experimental - therapy ; Metabolism ; Mice, Inbred C57BL ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial Dynamics ; Organelle Biogenesis ; p38 Mitogen-Activated Protein Kinases - metabolism ; Patients ; PD-1 protein ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Programmed Cell Death 1 Receptor - metabolism ; Signaling ; T-Lymphocytes - metabolism ; Tumor Necrosis Factor Receptor Superfamily, Member 9 - agonists ; Tumor Necrosis Factor Receptor Superfamily, Member 9 - metabolism ; Tumor necrosis factor receptors ; Tumors</subject><ispartof>The Journal of experimental medicine, 2018-04, Vol.215 (4), p.1091-1100</ispartof><rights>2018 Menk et al.</rights><rights>Copyright Rockefeller University Press Apr 2, 2018</rights><rights>2018 Menk et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-82c1262d9e92e4b937d8a81507f8d297f25c0048dab5ae6c81a7e0b31c6814213</citedby><cites>FETCH-LOGICAL-c412t-82c1262d9e92e4b937d8a81507f8d297f25c0048dab5ae6c81a7e0b31c6814213</cites><orcidid>0000-0003-4092-1552 ; 0000-0001-5778-7690 ; 0000-0002-2957-8135 ; 0000-0001-9373-4617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29511066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menk, Ashley V</creatorcontrib><creatorcontrib>Scharping, Nicole E</creatorcontrib><creatorcontrib>Rivadeneira, Dayana B</creatorcontrib><creatorcontrib>Calderon, Michael J</creatorcontrib><creatorcontrib>Watson, McLane J</creatorcontrib><creatorcontrib>Dunstane, Deanna</creatorcontrib><creatorcontrib>Watkins, Simon C</creatorcontrib><creatorcontrib>Delgoffe, Greg M</creatorcontrib><title>4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses</title><title>The Journal of experimental medicine</title><addtitle>J Exp Med</addtitle><description>Despite remarkable responses to cancer immunotherapy in a subset of patients, many patients remain resistant to these therapies. The tumor microenvironment can impose metabolic restrictions on T cell function, creating a resistance mechanism to immunotherapy. We have previously shown tumor-infiltrating T cells succumb to progressive loss of metabolic sufficiency, characterized by repression of mitochondrial activity that cannot be rescued by PD-1 blockade. 4-1BB, a costimulatory molecule highly expressed on exhausted T cells, has been shown to influence metabolic function. We hypothesized that 4-1BB signaling might provide metabolic support to tumor-infiltrating T cells. 4-1BB costimulation of CD8
T cells results in enhanced mitochondrial capacity (suggestive of fusion) and engages PGC1α-mediated pathways via activation of p38-MAPK. 4-1BB treatment of mice improves metabolic sufficiency in endogenous and adoptive therapeutic CD8
T cells. 4-1BB stimulation combined with PD-1 blockade results in robust antitumor immunity. Sequenced studies revealed the metabolic support afforded by 4-1BB agonism need not be continuous and that a short course of anti-4-1BB pretreatment was sufficient to provide a synergistic response. Our studies highlight metabolic reprogramming as the dominant effect of 4-1BB therapy and suggest that combinatorial strategies using 4-1BB agonism may help overcome the immunosuppressive metabolic landscape of the tumor microenvironment.</description><subject>Animals</subject><subject>Antibodies - pharmacology</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>CD8 antigen</subject><subject>Combinatorial analysis</subject><subject>Immunity</subject><subject>Immunosuppression</subject><subject>Immunotherapy</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>MAP kinase</subject><subject>Melanoma, Experimental - immunology</subject><subject>Melanoma, Experimental - therapy</subject><subject>Metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Dynamics</subject><subject>Organelle Biogenesis</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Patients</subject><subject>PD-1 protein</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Programmed Cell Death 1 Receptor - metabolism</subject><subject>Signaling</subject><subject>T-Lymphocytes - metabolism</subject><subject>Tumor Necrosis Factor Receptor Superfamily, Member 9 - agonists</subject><subject>Tumor Necrosis Factor Receptor Superfamily, Member 9 - metabolism</subject><subject>Tumor necrosis factor receptors</subject><subject>Tumors</subject><issn>0022-1007</issn><issn>1540-9538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0ctv1DAQBnALgehSuHFGlrhwIK3HcRzngkQrXlKlXsrZcpzJrleJvfiB1P--XvoQcPLBP32amY-Qt8DOgClxvsf1jDPogUn1jGygE6wZulY9JxvGOG-Asf6EvEppzxgI0cmX5IQPHVQvNySLBi4uqA0pu7UsJrvgqfNTsZjoDbW4LHR1Odhd8FN0ZqFz8faPMn6iowtb9JhcoujNuDi_pdZ4i5G6dS0-5B1Gc8CSnaUR0yH4hOk1eTGbJeGbh_eU_Pz65ebye3N1_e3H5eerxgrguVHcApd8GnDgKMah7SdlFHSsn9XEh37mnWVMqMmMnUFpFZge2diClQoEh_aUfLrPPZRxxcmiz9Es-hDdauKtDsbpf3-82-lt-K07VQNkWwM-PATE8Ktgynp16XgT4zGUpOvdQYJgUlT6_j-6DyX6ul5VnIm-5-qoPt4rG0NKEeenYYDpY5261qkf66z83d8LPOHH_to7URadAg</recordid><startdate>20180402</startdate><enddate>20180402</enddate><creator>Menk, Ashley V</creator><creator>Scharping, Nicole E</creator><creator>Rivadeneira, Dayana B</creator><creator>Calderon, Michael J</creator><creator>Watson, McLane J</creator><creator>Dunstane, Deanna</creator><creator>Watkins, Simon C</creator><creator>Delgoffe, Greg M</creator><general>Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4092-1552</orcidid><orcidid>https://orcid.org/0000-0001-5778-7690</orcidid><orcidid>https://orcid.org/0000-0002-2957-8135</orcidid><orcidid>https://orcid.org/0000-0001-9373-4617</orcidid></search><sort><creationdate>20180402</creationdate><title>4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses</title><author>Menk, Ashley V ; Scharping, Nicole E ; Rivadeneira, Dayana B ; Calderon, Michael J ; Watson, McLane J ; Dunstane, Deanna ; Watkins, Simon C ; Delgoffe, Greg M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-82c1262d9e92e4b937d8a81507f8d297f25c0048dab5ae6c81a7e0b31c6814213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antibodies - pharmacology</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>CD8 antigen</topic><topic>Combinatorial analysis</topic><topic>Immunity</topic><topic>Immunosuppression</topic><topic>Immunotherapy</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>MAP kinase</topic><topic>Melanoma, Experimental - immunology</topic><topic>Melanoma, Experimental - therapy</topic><topic>Metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Dynamics</topic><topic>Organelle Biogenesis</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Patients</topic><topic>PD-1 protein</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Programmed Cell Death 1 Receptor - metabolism</topic><topic>Signaling</topic><topic>T-Lymphocytes - metabolism</topic><topic>Tumor Necrosis Factor Receptor Superfamily, Member 9 - agonists</topic><topic>Tumor Necrosis Factor Receptor Superfamily, Member 9 - metabolism</topic><topic>Tumor necrosis factor receptors</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menk, Ashley V</creatorcontrib><creatorcontrib>Scharping, Nicole E</creatorcontrib><creatorcontrib>Rivadeneira, Dayana B</creatorcontrib><creatorcontrib>Calderon, Michael J</creatorcontrib><creatorcontrib>Watson, McLane J</creatorcontrib><creatorcontrib>Dunstane, Deanna</creatorcontrib><creatorcontrib>Watkins, Simon C</creatorcontrib><creatorcontrib>Delgoffe, Greg M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of experimental medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menk, Ashley V</au><au>Scharping, Nicole E</au><au>Rivadeneira, Dayana B</au><au>Calderon, Michael J</au><au>Watson, McLane J</au><au>Dunstane, Deanna</au><au>Watkins, Simon C</au><au>Delgoffe, Greg M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses</atitle><jtitle>The Journal of experimental medicine</jtitle><addtitle>J Exp Med</addtitle><date>2018-04-02</date><risdate>2018</risdate><volume>215</volume><issue>4</issue><spage>1091</spage><epage>1100</epage><pages>1091-1100</pages><issn>0022-1007</issn><eissn>1540-9538</eissn><abstract>Despite remarkable responses to cancer immunotherapy in a subset of patients, many patients remain resistant to these therapies. The tumor microenvironment can impose metabolic restrictions on T cell function, creating a resistance mechanism to immunotherapy. We have previously shown tumor-infiltrating T cells succumb to progressive loss of metabolic sufficiency, characterized by repression of mitochondrial activity that cannot be rescued by PD-1 blockade. 4-1BB, a costimulatory molecule highly expressed on exhausted T cells, has been shown to influence metabolic function. We hypothesized that 4-1BB signaling might provide metabolic support to tumor-infiltrating T cells. 4-1BB costimulation of CD8
T cells results in enhanced mitochondrial capacity (suggestive of fusion) and engages PGC1α-mediated pathways via activation of p38-MAPK. 4-1BB treatment of mice improves metabolic sufficiency in endogenous and adoptive therapeutic CD8
T cells. 4-1BB stimulation combined with PD-1 blockade results in robust antitumor immunity. Sequenced studies revealed the metabolic support afforded by 4-1BB agonism need not be continuous and that a short course of anti-4-1BB pretreatment was sufficient to provide a synergistic response. Our studies highlight metabolic reprogramming as the dominant effect of 4-1BB therapy and suggest that combinatorial strategies using 4-1BB agonism may help overcome the immunosuppressive metabolic landscape of the tumor microenvironment.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>29511066</pmid><doi>10.1084/jem.20171068</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4092-1552</orcidid><orcidid>https://orcid.org/0000-0001-5778-7690</orcidid><orcidid>https://orcid.org/0000-0002-2957-8135</orcidid><orcidid>https://orcid.org/0000-0001-9373-4617</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1007 |
ispartof | The Journal of experimental medicine, 2018-04, Vol.215 (4), p.1091-1100 |
issn | 0022-1007 1540-9538 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5881463 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Antibodies - pharmacology Cancer Cancer immunotherapy CD8 antigen Combinatorial analysis Immunity Immunosuppression Immunotherapy Lymphocytes Lymphocytes T MAP kinase Melanoma, Experimental - immunology Melanoma, Experimental - therapy Metabolism Mice, Inbred C57BL Mitochondria Mitochondria - metabolism Mitochondrial Dynamics Organelle Biogenesis p38 Mitogen-Activated Protein Kinases - metabolism Patients PD-1 protein Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism Programmed Cell Death 1 Receptor - metabolism Signaling T-Lymphocytes - metabolism Tumor Necrosis Factor Receptor Superfamily, Member 9 - agonists Tumor Necrosis Factor Receptor Superfamily, Member 9 - metabolism Tumor necrosis factor receptors Tumors |
title | 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=4-1BB%20costimulation%20induces%20T%20cell%20mitochondrial%20function%20and%20biogenesis%20enabling%20cancer%20immunotherapeutic%20responses&rft.jtitle=The%20Journal%20of%20experimental%20medicine&rft.au=Menk,%20Ashley%20V&rft.date=2018-04-02&rft.volume=215&rft.issue=4&rft.spage=1091&rft.epage=1100&rft.pages=1091-1100&rft.issn=0022-1007&rft.eissn=1540-9538&rft_id=info:doi/10.1084/jem.20171068&rft_dat=%3Cproquest_pubme%3E2011614064%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020477284&rft_id=info:pmid/29511066&rfr_iscdi=true |