Origin and Segmental Diversity of Spinal Inhibitory Interneurons

Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2018-01, Vol.97 (2), p.341-355.e3
Hauptverfasser: Sweeney, Lora B., Bikoff, Jay B., Gabitto, Mariano I., Brenner-Morton, Susan, Baek, Myungin, Yang, Jerry H., Tabak, Esteban G., Dasen, Jeremy S., Kintner, Christopher R., Jessell, Thomas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355.e3
container_issue 2
container_start_page 341
container_title Neuron (Cambridge, Mass.)
container_volume 97
creator Sweeney, Lora B.
Bikoff, Jay B.
Gabitto, Mariano I.
Brenner-Morton, Susan
Baek, Myungin
Yang, Jerry H.
Tabak, Esteban G.
Dasen, Jeremy S.
Kintner, Christopher R.
Jessell, Thomas M.
description Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output. [Display omitted] •Two transcription factors define limb and thoracic inhibitory V1 interneurons•Computational model predicts and compares thoracic and limb V1 cell-type diversity•Motor neurons are not required for limb and thoracic interneuron specification•Hox genes specify interneuron identity in limb and thoracic spinal cord Sweeney et al. show that the diversity of spinal inhibitory interneurons, defined by combinatorial transcription factor expression, differs along the body axis in correspondence with limb and thoracic motor output. Hox genes, not motor neurons, specify segmental differences in inhibitory interneuron identity.
doi_str_mv 10.1016/j.neuron.2017.12.029
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5880537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627317311765</els_id><sourcerecordid>1989559253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-cc29d8268b91368e71c3f4c4f7a2a45603429fd234b367ff036b078a23616d653</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCIbgv_AKFIXLgkePztCwKVApUq9VA4W47jbL3K2oudrLT_Hq-2lI8DpxnNvHkz8x5CrwB3gEG823TRLznFjmCQHZAOE_0ErQBr2TLQ-ilaYaVFK4ikZ-i8lA3GwLiG5-iMaIqlBLJCH25zWIfY2Dg0d3699XG2U_Mp7H0uYT40aWzudiHW2nW8D32YUz7UdPb5tL28QM9GOxX_8iFeoO-fr75dfm1vbr9cX368aR3TMLfOET0oIlSvgQrlJTg6MsdGaYllXGDKiB4HQllPhRxHTEWPpbKEChCD4PQCvT_x7pZ-6wdXD812MrsctjYfTLLB_N2J4d6s095wpTCnshK8fSDI6cfiy2y2oTg_TTb6tBQDWmnONeG0Qt_8A92kJVcRiiFVRE6wUkcUO6FcTqVkPz4eA9gcLTIbcxLJHC0yQEy1qI69_vORx6Ffnvz-1Fc598FnU1zw0fkhZO9mM6Tw_w0_AXDko_M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001520883</pqid></control><display><type>article</type><title>Origin and Segmental Diversity of Spinal Inhibitory Interneurons</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sweeney, Lora B. ; Bikoff, Jay B. ; Gabitto, Mariano I. ; Brenner-Morton, Susan ; Baek, Myungin ; Yang, Jerry H. ; Tabak, Esteban G. ; Dasen, Jeremy S. ; Kintner, Christopher R. ; Jessell, Thomas M.</creator><creatorcontrib>Sweeney, Lora B. ; Bikoff, Jay B. ; Gabitto, Mariano I. ; Brenner-Morton, Susan ; Baek, Myungin ; Yang, Jerry H. ; Tabak, Esteban G. ; Dasen, Jeremy S. ; Kintner, Christopher R. ; Jessell, Thomas M.</creatorcontrib><description>Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output. [Display omitted] •Two transcription factors define limb and thoracic inhibitory V1 interneurons•Computational model predicts and compares thoracic and limb V1 cell-type diversity•Motor neurons are not required for limb and thoracic interneuron specification•Hox genes specify interneuron identity in limb and thoracic spinal cord Sweeney et al. show that the diversity of spinal inhibitory interneurons, defined by combinatorial transcription factor expression, differs along the body axis in correspondence with limb and thoracic motor output. Hox genes, not motor neurons, specify segmental differences in inhibitory interneuron identity.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.12.029</identifier><identifier>PMID: 29307712</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Bayes Theorem ; cell identity ; development ; Forelimb - embryology ; Forelimb - innervation ; Gene Expression Profiling ; Genes, Homeobox ; Hindlimb - embryology ; Hindlimb - innervation ; Homeodomain Proteins - physiology ; Hox proteins ; inhibitory interneurons ; Interneurons ; Interneurons - physiology ; Lumbosacral Region ; Mice ; Mice, Knockout ; motor circuit ; Motor neurons ; Motor Neurons - physiology ; Motor task performance ; Muscles ; Nerve Tissue Proteins - physiology ; Neurons ; Pattern formation ; Posture ; Rodents ; Spinal cord ; Spinal Cord - cytology ; Spinal Cord - embryology ; spinal cord patterning ; Thorax ; transcription factor ; Transcription factors ; Transcription Factors - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2018-01, Vol.97 (2), p.341-355.e3</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>2017. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-cc29d8268b91368e71c3f4c4f7a2a45603429fd234b367ff036b078a23616d653</citedby><cites>FETCH-LOGICAL-c491t-cc29d8268b91368e71c3f4c4f7a2a45603429fd234b367ff036b078a23616d653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2017.12.029$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29307712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sweeney, Lora B.</creatorcontrib><creatorcontrib>Bikoff, Jay B.</creatorcontrib><creatorcontrib>Gabitto, Mariano I.</creatorcontrib><creatorcontrib>Brenner-Morton, Susan</creatorcontrib><creatorcontrib>Baek, Myungin</creatorcontrib><creatorcontrib>Yang, Jerry H.</creatorcontrib><creatorcontrib>Tabak, Esteban G.</creatorcontrib><creatorcontrib>Dasen, Jeremy S.</creatorcontrib><creatorcontrib>Kintner, Christopher R.</creatorcontrib><creatorcontrib>Jessell, Thomas M.</creatorcontrib><title>Origin and Segmental Diversity of Spinal Inhibitory Interneurons</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output. [Display omitted] •Two transcription factors define limb and thoracic inhibitory V1 interneurons•Computational model predicts and compares thoracic and limb V1 cell-type diversity•Motor neurons are not required for limb and thoracic interneuron specification•Hox genes specify interneuron identity in limb and thoracic spinal cord Sweeney et al. show that the diversity of spinal inhibitory interneurons, defined by combinatorial transcription factor expression, differs along the body axis in correspondence with limb and thoracic motor output. Hox genes, not motor neurons, specify segmental differences in inhibitory interneuron identity.</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>cell identity</subject><subject>development</subject><subject>Forelimb - embryology</subject><subject>Forelimb - innervation</subject><subject>Gene Expression Profiling</subject><subject>Genes, Homeobox</subject><subject>Hindlimb - embryology</subject><subject>Hindlimb - innervation</subject><subject>Homeodomain Proteins - physiology</subject><subject>Hox proteins</subject><subject>inhibitory interneurons</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Lumbosacral Region</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>motor circuit</subject><subject>Motor neurons</subject><subject>Motor Neurons - physiology</subject><subject>Motor task performance</subject><subject>Muscles</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Neurons</subject><subject>Pattern formation</subject><subject>Posture</subject><subject>Rodents</subject><subject>Spinal cord</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - embryology</subject><subject>spinal cord patterning</subject><subject>Thorax</subject><subject>transcription factor</subject><subject>Transcription factors</subject><subject>Transcription Factors - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQtRCIbgv_AKFIXLgkePztCwKVApUq9VA4W47jbL3K2oudrLT_Hq-2lI8DpxnNvHkz8x5CrwB3gEG823TRLznFjmCQHZAOE_0ErQBr2TLQ-ilaYaVFK4ikZ-i8lA3GwLiG5-iMaIqlBLJCH25zWIfY2Dg0d3699XG2U_Mp7H0uYT40aWzudiHW2nW8D32YUz7UdPb5tL28QM9GOxX_8iFeoO-fr75dfm1vbr9cX368aR3TMLfOET0oIlSvgQrlJTg6MsdGaYllXGDKiB4HQllPhRxHTEWPpbKEChCD4PQCvT_x7pZ-6wdXD812MrsctjYfTLLB_N2J4d6s095wpTCnshK8fSDI6cfiy2y2oTg_TTb6tBQDWmnONeG0Qt_8A92kJVcRiiFVRE6wUkcUO6FcTqVkPz4eA9gcLTIbcxLJHC0yQEy1qI69_vORx6Ffnvz-1Fc598FnU1zw0fkhZO9mM6Tw_w0_AXDko_M</recordid><startdate>20180117</startdate><enddate>20180117</enddate><creator>Sweeney, Lora B.</creator><creator>Bikoff, Jay B.</creator><creator>Gabitto, Mariano I.</creator><creator>Brenner-Morton, Susan</creator><creator>Baek, Myungin</creator><creator>Yang, Jerry H.</creator><creator>Tabak, Esteban G.</creator><creator>Dasen, Jeremy S.</creator><creator>Kintner, Christopher R.</creator><creator>Jessell, Thomas M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180117</creationdate><title>Origin and Segmental Diversity of Spinal Inhibitory Interneurons</title><author>Sweeney, Lora B. ; Bikoff, Jay B. ; Gabitto, Mariano I. ; Brenner-Morton, Susan ; Baek, Myungin ; Yang, Jerry H. ; Tabak, Esteban G. ; Dasen, Jeremy S. ; Kintner, Christopher R. ; Jessell, Thomas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-cc29d8268b91368e71c3f4c4f7a2a45603429fd234b367ff036b078a23616d653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>cell identity</topic><topic>development</topic><topic>Forelimb - embryology</topic><topic>Forelimb - innervation</topic><topic>Gene Expression Profiling</topic><topic>Genes, Homeobox</topic><topic>Hindlimb - embryology</topic><topic>Hindlimb - innervation</topic><topic>Homeodomain Proteins - physiology</topic><topic>Hox proteins</topic><topic>inhibitory interneurons</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Lumbosacral Region</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>motor circuit</topic><topic>Motor neurons</topic><topic>Motor Neurons - physiology</topic><topic>Motor task performance</topic><topic>Muscles</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Neurons</topic><topic>Pattern formation</topic><topic>Posture</topic><topic>Rodents</topic><topic>Spinal cord</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - embryology</topic><topic>spinal cord patterning</topic><topic>Thorax</topic><topic>transcription factor</topic><topic>Transcription factors</topic><topic>Transcription Factors - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sweeney, Lora B.</creatorcontrib><creatorcontrib>Bikoff, Jay B.</creatorcontrib><creatorcontrib>Gabitto, Mariano I.</creatorcontrib><creatorcontrib>Brenner-Morton, Susan</creatorcontrib><creatorcontrib>Baek, Myungin</creatorcontrib><creatorcontrib>Yang, Jerry H.</creatorcontrib><creatorcontrib>Tabak, Esteban G.</creatorcontrib><creatorcontrib>Dasen, Jeremy S.</creatorcontrib><creatorcontrib>Kintner, Christopher R.</creatorcontrib><creatorcontrib>Jessell, Thomas M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sweeney, Lora B.</au><au>Bikoff, Jay B.</au><au>Gabitto, Mariano I.</au><au>Brenner-Morton, Susan</au><au>Baek, Myungin</au><au>Yang, Jerry H.</au><au>Tabak, Esteban G.</au><au>Dasen, Jeremy S.</au><au>Kintner, Christopher R.</au><au>Jessell, Thomas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin and Segmental Diversity of Spinal Inhibitory Interneurons</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-01-17</date><risdate>2018</risdate><volume>97</volume><issue>2</issue><spage>341</spage><epage>355.e3</epage><pages>341-355.e3</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output. [Display omitted] •Two transcription factors define limb and thoracic inhibitory V1 interneurons•Computational model predicts and compares thoracic and limb V1 cell-type diversity•Motor neurons are not required for limb and thoracic interneuron specification•Hox genes specify interneuron identity in limb and thoracic spinal cord Sweeney et al. show that the diversity of spinal inhibitory interneurons, defined by combinatorial transcription factor expression, differs along the body axis in correspondence with limb and thoracic motor output. Hox genes, not motor neurons, specify segmental differences in inhibitory interneuron identity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29307712</pmid><doi>10.1016/j.neuron.2017.12.029</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2018-01, Vol.97 (2), p.341-355.e3
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5880537
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Animals
Bayes Theorem
cell identity
development
Forelimb - embryology
Forelimb - innervation
Gene Expression Profiling
Genes, Homeobox
Hindlimb - embryology
Hindlimb - innervation
Homeodomain Proteins - physiology
Hox proteins
inhibitory interneurons
Interneurons
Interneurons - physiology
Lumbosacral Region
Mice
Mice, Knockout
motor circuit
Motor neurons
Motor Neurons - physiology
Motor task performance
Muscles
Nerve Tissue Proteins - physiology
Neurons
Pattern formation
Posture
Rodents
Spinal cord
Spinal Cord - cytology
Spinal Cord - embryology
spinal cord patterning
Thorax
transcription factor
Transcription factors
Transcription Factors - physiology
title Origin and Segmental Diversity of Spinal Inhibitory Interneurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20and%20Segmental%20Diversity%20of%20Spinal%20Inhibitory%20Interneurons&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Sweeney,%20Lora%20B.&rft.date=2018-01-17&rft.volume=97&rft.issue=2&rft.spage=341&rft.epage=355.e3&rft.pages=341-355.e3&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.12.029&rft_dat=%3Cproquest_pubme%3E1989559253%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001520883&rft_id=info:pmid/29307712&rft_els_id=S0896627317311765&rfr_iscdi=true