Origin and Segmental Diversity of Spinal Inhibitory Interneurons
Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expir...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2018-01, Vol.97 (2), p.341-355.e3 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355.e3 |
---|---|
container_issue | 2 |
container_start_page | 341 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 97 |
creator | Sweeney, Lora B. Bikoff, Jay B. Gabitto, Mariano I. Brenner-Morton, Susan Baek, Myungin Yang, Jerry H. Tabak, Esteban G. Dasen, Jeremy S. Kintner, Christopher R. Jessell, Thomas M. |
description | Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.
[Display omitted]
•Two transcription factors define limb and thoracic inhibitory V1 interneurons•Computational model predicts and compares thoracic and limb V1 cell-type diversity•Motor neurons are not required for limb and thoracic interneuron specification•Hox genes specify interneuron identity in limb and thoracic spinal cord
Sweeney et al. show that the diversity of spinal inhibitory interneurons, defined by combinatorial transcription factor expression, differs along the body axis in correspondence with limb and thoracic motor output. Hox genes, not motor neurons, specify segmental differences in inhibitory interneuron identity. |
doi_str_mv | 10.1016/j.neuron.2017.12.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5880537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627317311765</els_id><sourcerecordid>1989559253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-cc29d8268b91368e71c3f4c4f7a2a45603429fd234b367ff036b078a23616d653</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCIbgv_AKFIXLgkePztCwKVApUq9VA4W47jbL3K2oudrLT_Hq-2lI8DpxnNvHkz8x5CrwB3gEG823TRLznFjmCQHZAOE_0ErQBr2TLQ-ilaYaVFK4ikZ-i8lA3GwLiG5-iMaIqlBLJCH25zWIfY2Dg0d3699XG2U_Mp7H0uYT40aWzudiHW2nW8D32YUz7UdPb5tL28QM9GOxX_8iFeoO-fr75dfm1vbr9cX368aR3TMLfOET0oIlSvgQrlJTg6MsdGaYllXGDKiB4HQllPhRxHTEWPpbKEChCD4PQCvT_x7pZ-6wdXD812MrsctjYfTLLB_N2J4d6s095wpTCnshK8fSDI6cfiy2y2oTg_TTb6tBQDWmnONeG0Qt_8A92kJVcRiiFVRE6wUkcUO6FcTqVkPz4eA9gcLTIbcxLJHC0yQEy1qI69_vORx6Ffnvz-1Fc598FnU1zw0fkhZO9mM6Tw_w0_AXDko_M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001520883</pqid></control><display><type>article</type><title>Origin and Segmental Diversity of Spinal Inhibitory Interneurons</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sweeney, Lora B. ; Bikoff, Jay B. ; Gabitto, Mariano I. ; Brenner-Morton, Susan ; Baek, Myungin ; Yang, Jerry H. ; Tabak, Esteban G. ; Dasen, Jeremy S. ; Kintner, Christopher R. ; Jessell, Thomas M.</creator><creatorcontrib>Sweeney, Lora B. ; Bikoff, Jay B. ; Gabitto, Mariano I. ; Brenner-Morton, Susan ; Baek, Myungin ; Yang, Jerry H. ; Tabak, Esteban G. ; Dasen, Jeremy S. ; Kintner, Christopher R. ; Jessell, Thomas M.</creatorcontrib><description>Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.
[Display omitted]
•Two transcription factors define limb and thoracic inhibitory V1 interneurons•Computational model predicts and compares thoracic and limb V1 cell-type diversity•Motor neurons are not required for limb and thoracic interneuron specification•Hox genes specify interneuron identity in limb and thoracic spinal cord
Sweeney et al. show that the diversity of spinal inhibitory interneurons, defined by combinatorial transcription factor expression, differs along the body axis in correspondence with limb and thoracic motor output. Hox genes, not motor neurons, specify segmental differences in inhibitory interneuron identity.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.12.029</identifier><identifier>PMID: 29307712</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Bayes Theorem ; cell identity ; development ; Forelimb - embryology ; Forelimb - innervation ; Gene Expression Profiling ; Genes, Homeobox ; Hindlimb - embryology ; Hindlimb - innervation ; Homeodomain Proteins - physiology ; Hox proteins ; inhibitory interneurons ; Interneurons ; Interneurons - physiology ; Lumbosacral Region ; Mice ; Mice, Knockout ; motor circuit ; Motor neurons ; Motor Neurons - physiology ; Motor task performance ; Muscles ; Nerve Tissue Proteins - physiology ; Neurons ; Pattern formation ; Posture ; Rodents ; Spinal cord ; Spinal Cord - cytology ; Spinal Cord - embryology ; spinal cord patterning ; Thorax ; transcription factor ; Transcription factors ; Transcription Factors - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2018-01, Vol.97 (2), p.341-355.e3</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>2017. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-cc29d8268b91368e71c3f4c4f7a2a45603429fd234b367ff036b078a23616d653</citedby><cites>FETCH-LOGICAL-c491t-cc29d8268b91368e71c3f4c4f7a2a45603429fd234b367ff036b078a23616d653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2017.12.029$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29307712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sweeney, Lora B.</creatorcontrib><creatorcontrib>Bikoff, Jay B.</creatorcontrib><creatorcontrib>Gabitto, Mariano I.</creatorcontrib><creatorcontrib>Brenner-Morton, Susan</creatorcontrib><creatorcontrib>Baek, Myungin</creatorcontrib><creatorcontrib>Yang, Jerry H.</creatorcontrib><creatorcontrib>Tabak, Esteban G.</creatorcontrib><creatorcontrib>Dasen, Jeremy S.</creatorcontrib><creatorcontrib>Kintner, Christopher R.</creatorcontrib><creatorcontrib>Jessell, Thomas M.</creatorcontrib><title>Origin and Segmental Diversity of Spinal Inhibitory Interneurons</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.
[Display omitted]
•Two transcription factors define limb and thoracic inhibitory V1 interneurons•Computational model predicts and compares thoracic and limb V1 cell-type diversity•Motor neurons are not required for limb and thoracic interneuron specification•Hox genes specify interneuron identity in limb and thoracic spinal cord
Sweeney et al. show that the diversity of spinal inhibitory interneurons, defined by combinatorial transcription factor expression, differs along the body axis in correspondence with limb and thoracic motor output. Hox genes, not motor neurons, specify segmental differences in inhibitory interneuron identity.</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>cell identity</subject><subject>development</subject><subject>Forelimb - embryology</subject><subject>Forelimb - innervation</subject><subject>Gene Expression Profiling</subject><subject>Genes, Homeobox</subject><subject>Hindlimb - embryology</subject><subject>Hindlimb - innervation</subject><subject>Homeodomain Proteins - physiology</subject><subject>Hox proteins</subject><subject>inhibitory interneurons</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Lumbosacral Region</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>motor circuit</subject><subject>Motor neurons</subject><subject>Motor Neurons - physiology</subject><subject>Motor task performance</subject><subject>Muscles</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Neurons</subject><subject>Pattern formation</subject><subject>Posture</subject><subject>Rodents</subject><subject>Spinal cord</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - embryology</subject><subject>spinal cord patterning</subject><subject>Thorax</subject><subject>transcription factor</subject><subject>Transcription factors</subject><subject>Transcription Factors - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQtRCIbgv_AKFIXLgkePztCwKVApUq9VA4W47jbL3K2oudrLT_Hq-2lI8DpxnNvHkz8x5CrwB3gEG823TRLznFjmCQHZAOE_0ErQBr2TLQ-ilaYaVFK4ikZ-i8lA3GwLiG5-iMaIqlBLJCH25zWIfY2Dg0d3699XG2U_Mp7H0uYT40aWzudiHW2nW8D32YUz7UdPb5tL28QM9GOxX_8iFeoO-fr75dfm1vbr9cX368aR3TMLfOET0oIlSvgQrlJTg6MsdGaYllXGDKiB4HQllPhRxHTEWPpbKEChCD4PQCvT_x7pZ-6wdXD812MrsctjYfTLLB_N2J4d6s095wpTCnshK8fSDI6cfiy2y2oTg_TTb6tBQDWmnONeG0Qt_8A92kJVcRiiFVRE6wUkcUO6FcTqVkPz4eA9gcLTIbcxLJHC0yQEy1qI69_vORx6Ffnvz-1Fc598FnU1zw0fkhZO9mM6Tw_w0_AXDko_M</recordid><startdate>20180117</startdate><enddate>20180117</enddate><creator>Sweeney, Lora B.</creator><creator>Bikoff, Jay B.</creator><creator>Gabitto, Mariano I.</creator><creator>Brenner-Morton, Susan</creator><creator>Baek, Myungin</creator><creator>Yang, Jerry H.</creator><creator>Tabak, Esteban G.</creator><creator>Dasen, Jeremy S.</creator><creator>Kintner, Christopher R.</creator><creator>Jessell, Thomas M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180117</creationdate><title>Origin and Segmental Diversity of Spinal Inhibitory Interneurons</title><author>Sweeney, Lora B. ; Bikoff, Jay B. ; Gabitto, Mariano I. ; Brenner-Morton, Susan ; Baek, Myungin ; Yang, Jerry H. ; Tabak, Esteban G. ; Dasen, Jeremy S. ; Kintner, Christopher R. ; Jessell, Thomas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-cc29d8268b91368e71c3f4c4f7a2a45603429fd234b367ff036b078a23616d653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>cell identity</topic><topic>development</topic><topic>Forelimb - embryology</topic><topic>Forelimb - innervation</topic><topic>Gene Expression Profiling</topic><topic>Genes, Homeobox</topic><topic>Hindlimb - embryology</topic><topic>Hindlimb - innervation</topic><topic>Homeodomain Proteins - physiology</topic><topic>Hox proteins</topic><topic>inhibitory interneurons</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Lumbosacral Region</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>motor circuit</topic><topic>Motor neurons</topic><topic>Motor Neurons - physiology</topic><topic>Motor task performance</topic><topic>Muscles</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Neurons</topic><topic>Pattern formation</topic><topic>Posture</topic><topic>Rodents</topic><topic>Spinal cord</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - embryology</topic><topic>spinal cord patterning</topic><topic>Thorax</topic><topic>transcription factor</topic><topic>Transcription factors</topic><topic>Transcription Factors - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sweeney, Lora B.</creatorcontrib><creatorcontrib>Bikoff, Jay B.</creatorcontrib><creatorcontrib>Gabitto, Mariano I.</creatorcontrib><creatorcontrib>Brenner-Morton, Susan</creatorcontrib><creatorcontrib>Baek, Myungin</creatorcontrib><creatorcontrib>Yang, Jerry H.</creatorcontrib><creatorcontrib>Tabak, Esteban G.</creatorcontrib><creatorcontrib>Dasen, Jeremy S.</creatorcontrib><creatorcontrib>Kintner, Christopher R.</creatorcontrib><creatorcontrib>Jessell, Thomas M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sweeney, Lora B.</au><au>Bikoff, Jay B.</au><au>Gabitto, Mariano I.</au><au>Brenner-Morton, Susan</au><au>Baek, Myungin</au><au>Yang, Jerry H.</au><au>Tabak, Esteban G.</au><au>Dasen, Jeremy S.</au><au>Kintner, Christopher R.</au><au>Jessell, Thomas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin and Segmental Diversity of Spinal Inhibitory Interneurons</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-01-17</date><risdate>2018</risdate><volume>97</volume><issue>2</issue><spage>341</spage><epage>355.e3</epage><pages>341-355.e3</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.
[Display omitted]
•Two transcription factors define limb and thoracic inhibitory V1 interneurons•Computational model predicts and compares thoracic and limb V1 cell-type diversity•Motor neurons are not required for limb and thoracic interneuron specification•Hox genes specify interneuron identity in limb and thoracic spinal cord
Sweeney et al. show that the diversity of spinal inhibitory interneurons, defined by combinatorial transcription factor expression, differs along the body axis in correspondence with limb and thoracic motor output. Hox genes, not motor neurons, specify segmental differences in inhibitory interneuron identity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29307712</pmid><doi>10.1016/j.neuron.2017.12.029</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2018-01, Vol.97 (2), p.341-355.e3 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5880537 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Animals Bayes Theorem cell identity development Forelimb - embryology Forelimb - innervation Gene Expression Profiling Genes, Homeobox Hindlimb - embryology Hindlimb - innervation Homeodomain Proteins - physiology Hox proteins inhibitory interneurons Interneurons Interneurons - physiology Lumbosacral Region Mice Mice, Knockout motor circuit Motor neurons Motor Neurons - physiology Motor task performance Muscles Nerve Tissue Proteins - physiology Neurons Pattern formation Posture Rodents Spinal cord Spinal Cord - cytology Spinal Cord - embryology spinal cord patterning Thorax transcription factor Transcription factors Transcription Factors - physiology |
title | Origin and Segmental Diversity of Spinal Inhibitory Interneurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20and%20Segmental%20Diversity%20of%20Spinal%20Inhibitory%20Interneurons&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Sweeney,%20Lora%20B.&rft.date=2018-01-17&rft.volume=97&rft.issue=2&rft.spage=341&rft.epage=355.e3&rft.pages=341-355.e3&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.12.029&rft_dat=%3Cproquest_pubme%3E1989559253%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001520883&rft_id=info:pmid/29307712&rft_els_id=S0896627317311765&rfr_iscdi=true |