Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri

Gene amplification has been observed in many bacteria and eukaryotes as a response to various selective pressures, such as antibiotics, cytotoxic drugs, pesticides, herbicides, and other stressful environmental conditions. An increase in gene copy number is often found as extrachromosomal elements t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-03, Vol.115 (13), p.3332-3337
Hauptverfasser: Koo, Dal-Hoe, Molin, William T., Saski, Christopher A., Jiang, Jiming, Putta, Karthik, Jugulam, Mithila, Friebe, Bernd, Gill, Bikram S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3337
container_issue 13
container_start_page 3332
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Koo, Dal-Hoe
Molin, William T.
Saski, Christopher A.
Jiang, Jiming
Putta, Karthik
Jugulam, Mithila
Friebe, Bernd
Gill, Bikram S.
description Gene amplification has been observed in many bacteria and eukaryotes as a response to various selective pressures, such as antibiotics, cytotoxic drugs, pesticides, herbicides, and other stressful environmental conditions. An increase in gene copy number is often found as extrachromosomal elements that usually contain autonomously replicating extrachromosomal circular DNA molecules (eccDNAs). Amaranthus palmeri, a crop weed, can develop herbicide resistance to glyphosate [N-(phosphonomethyl) glycine] by amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the molecular target of glyphosate. However, biological questions regarding the source of the amplified EPSPS, the nature of the amplified DNA structures, and mechanisms responsible for maintaining this gene amplification in cells and their inheritance remain unknown. Here, we report that amplified EPSPS copies in glyphosate-resistant (GR) A. palmeri are present in the form of eccDNAs with various conformations. The eccDNAs are transmitted during cell division in mitosis and meiosis to the soma and germ cells and the progeny by an as yet unknown mechanism of tethering to mitotic and meiotic chromosomes. We propose that eccDNAs are one of the components of McClintock’s postulated innate systems [McClintock B (1978) Stadler Genetics Symposium] that can rapidly produce soma variation, amplify EPSPS genes in the sporophyte that are transmitted to germ cells, and modulate rapid glyphosate resistance through genome plasticity and adaptive evolution.
doi_str_mv 10.1073/pnas.1719354115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5879691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508227</jstor_id><sourcerecordid>26508227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-e54cbe214dfcbce43b3c70e06493513fb142ea7578a5ec8f5480e624721b2893</originalsourceid><addsrcrecordid>eNpVkUtv1DAUhS0EokNhzQpkiXVaXz_G9gZpVMpDqmDTveU4N4xHSRzshNevx6MpLaws3fud43N1CHkJ7AKYFpfz5MsFaLBCSQD1iGyAWWi20rLHZMMY142RXJ6RZ6UcGGNWGfaUnHGrBDBuNuT39c8l-7DPaUwljX6gIeawDj7Td593TesLdtSP8xD7GPwS00T91NGqmcoYSzkOUk_3mNsYYoc0Y4ll8VNAGicacprpD6weu9FXzbJfC539MGKOz8mT3g8FX9y95-T2_fXt1cfm5suHT1e7myZIY5cGlQwtcpBdH9qAUrQiaIas3igUiL4FydFrpY1XGEyvpGG45VJzaLmx4py8PdnOaztiF3Cq4Qc351gT_XLJR_f_Zop79zV9d8pou7VQDd7cGeT0bcWyuENa81QjOw4MhACjjtTliaonl5Kxv_8BmDt25Y5duYeuquL1v8Hu-b_lVODVCTiUJeWH_VYxw7kWfwCG_Z0m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101331851</pqid></control><display><type>article</type><title>Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri</title><source>PubMed Central Free</source><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Koo, Dal-Hoe ; Molin, William T. ; Saski, Christopher A. ; Jiang, Jiming ; Putta, Karthik ; Jugulam, Mithila ; Friebe, Bernd ; Gill, Bikram S.</creator><creatorcontrib>Koo, Dal-Hoe ; Molin, William T. ; Saski, Christopher A. ; Jiang, Jiming ; Putta, Karthik ; Jugulam, Mithila ; Friebe, Bernd ; Gill, Bikram S.</creatorcontrib><description>Gene amplification has been observed in many bacteria and eukaryotes as a response to various selective pressures, such as antibiotics, cytotoxic drugs, pesticides, herbicides, and other stressful environmental conditions. An increase in gene copy number is often found as extrachromosomal elements that usually contain autonomously replicating extrachromosomal circular DNA molecules (eccDNAs). Amaranthus palmeri, a crop weed, can develop herbicide resistance to glyphosate [N-(phosphonomethyl) glycine] by amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the molecular target of glyphosate. However, biological questions regarding the source of the amplified EPSPS, the nature of the amplified DNA structures, and mechanisms responsible for maintaining this gene amplification in cells and their inheritance remain unknown. Here, we report that amplified EPSPS copies in glyphosate-resistant (GR) A. palmeri are present in the form of eccDNAs with various conformations. The eccDNAs are transmitted during cell division in mitosis and meiosis to the soma and germ cells and the progeny by an as yet unknown mechanism of tethering to mitotic and meiotic chromosomes. We propose that eccDNAs are one of the components of McClintock’s postulated innate systems [McClintock B (1978) Stadler Genetics Symposium] that can rapidly produce soma variation, amplify EPSPS genes in the sporophyte that are transmitted to germ cells, and modulate rapid glyphosate resistance through genome plasticity and adaptive evolution.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1719354115</identifier><identifier>PMID: 29531028</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>3-Phosphoshikimate 1-Carboxyvinyltransferase - genetics ; Amaranthus - drug effects ; Amaranthus - enzymology ; Amaranthus - genetics ; Amaranthus palmeri ; Amplification ; Antibiotics ; Biological Sciences ; Cell division ; Chromosomes ; Chromosomes, Plant ; Circular DNA ; Copy number ; Crops ; Cytotoxicity ; Deoxyribonucleic acid ; DNA ; DNA, Circular ; Environmental conditions ; Eukaryotes ; Gene Amplification ; Gene Expression Regulation, Plant ; Genetics ; Genomes ; Germ cells ; Glycine ; Glycine - analogs &amp; derivatives ; Glycine - pharmacology ; Glyphosate ; Herbicide resistance ; Herbicide Resistance - genetics ; Herbicides ; Herbicides - pharmacology ; Heredity ; Meiosis ; Mitosis ; Pesticides ; Plant resistance ; Progeny ; Replicating ; Tethering ; Weeds</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (13), p.3332-3337</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 27, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-e54cbe214dfcbce43b3c70e06493513fb142ea7578a5ec8f5480e624721b2893</citedby><cites>FETCH-LOGICAL-c489t-e54cbe214dfcbce43b3c70e06493513fb142ea7578a5ec8f5480e624721b2893</cites><orcidid>0000-0003-2065-9067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508227$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508227$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29531028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koo, Dal-Hoe</creatorcontrib><creatorcontrib>Molin, William T.</creatorcontrib><creatorcontrib>Saski, Christopher A.</creatorcontrib><creatorcontrib>Jiang, Jiming</creatorcontrib><creatorcontrib>Putta, Karthik</creatorcontrib><creatorcontrib>Jugulam, Mithila</creatorcontrib><creatorcontrib>Friebe, Bernd</creatorcontrib><creatorcontrib>Gill, Bikram S.</creatorcontrib><title>Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Gene amplification has been observed in many bacteria and eukaryotes as a response to various selective pressures, such as antibiotics, cytotoxic drugs, pesticides, herbicides, and other stressful environmental conditions. An increase in gene copy number is often found as extrachromosomal elements that usually contain autonomously replicating extrachromosomal circular DNA molecules (eccDNAs). Amaranthus palmeri, a crop weed, can develop herbicide resistance to glyphosate [N-(phosphonomethyl) glycine] by amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the molecular target of glyphosate. However, biological questions regarding the source of the amplified EPSPS, the nature of the amplified DNA structures, and mechanisms responsible for maintaining this gene amplification in cells and their inheritance remain unknown. Here, we report that amplified EPSPS copies in glyphosate-resistant (GR) A. palmeri are present in the form of eccDNAs with various conformations. The eccDNAs are transmitted during cell division in mitosis and meiosis to the soma and germ cells and the progeny by an as yet unknown mechanism of tethering to mitotic and meiotic chromosomes. We propose that eccDNAs are one of the components of McClintock’s postulated innate systems [McClintock B (1978) Stadler Genetics Symposium] that can rapidly produce soma variation, amplify EPSPS genes in the sporophyte that are transmitted to germ cells, and modulate rapid glyphosate resistance through genome plasticity and adaptive evolution.</description><subject>3-Phosphoshikimate 1-Carboxyvinyltransferase - genetics</subject><subject>Amaranthus - drug effects</subject><subject>Amaranthus - enzymology</subject><subject>Amaranthus - genetics</subject><subject>Amaranthus palmeri</subject><subject>Amplification</subject><subject>Antibiotics</subject><subject>Biological Sciences</subject><subject>Cell division</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant</subject><subject>Circular DNA</subject><subject>Copy number</subject><subject>Crops</subject><subject>Cytotoxicity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Circular</subject><subject>Environmental conditions</subject><subject>Eukaryotes</subject><subject>Gene Amplification</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Germ cells</subject><subject>Glycine</subject><subject>Glycine - analogs &amp; derivatives</subject><subject>Glycine - pharmacology</subject><subject>Glyphosate</subject><subject>Herbicide resistance</subject><subject>Herbicide Resistance - genetics</subject><subject>Herbicides</subject><subject>Herbicides - pharmacology</subject><subject>Heredity</subject><subject>Meiosis</subject><subject>Mitosis</subject><subject>Pesticides</subject><subject>Plant resistance</subject><subject>Progeny</subject><subject>Replicating</subject><subject>Tethering</subject><subject>Weeds</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtv1DAUhS0EokNhzQpkiXVaXz_G9gZpVMpDqmDTveU4N4xHSRzshNevx6MpLaws3fud43N1CHkJ7AKYFpfz5MsFaLBCSQD1iGyAWWi20rLHZMMY142RXJ6RZ6UcGGNWGfaUnHGrBDBuNuT39c8l-7DPaUwljX6gIeawDj7Td593TesLdtSP8xD7GPwS00T91NGqmcoYSzkOUk_3mNsYYoc0Y4ll8VNAGicacprpD6weu9FXzbJfC539MGKOz8mT3g8FX9y95-T2_fXt1cfm5suHT1e7myZIY5cGlQwtcpBdH9qAUrQiaIas3igUiL4FydFrpY1XGEyvpGG45VJzaLmx4py8PdnOaztiF3Cq4Qc351gT_XLJR_f_Zop79zV9d8pou7VQDd7cGeT0bcWyuENa81QjOw4MhACjjtTliaonl5Kxv_8BmDt25Y5duYeuquL1v8Hu-b_lVODVCTiUJeWH_VYxw7kWfwCG_Z0m</recordid><startdate>20180327</startdate><enddate>20180327</enddate><creator>Koo, Dal-Hoe</creator><creator>Molin, William T.</creator><creator>Saski, Christopher A.</creator><creator>Jiang, Jiming</creator><creator>Putta, Karthik</creator><creator>Jugulam, Mithila</creator><creator>Friebe, Bernd</creator><creator>Gill, Bikram S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2065-9067</orcidid></search><sort><creationdate>20180327</creationdate><title>Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri</title><author>Koo, Dal-Hoe ; Molin, William T. ; Saski, Christopher A. ; Jiang, Jiming ; Putta, Karthik ; Jugulam, Mithila ; Friebe, Bernd ; Gill, Bikram S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-e54cbe214dfcbce43b3c70e06493513fb142ea7578a5ec8f5480e624721b2893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3-Phosphoshikimate 1-Carboxyvinyltransferase - genetics</topic><topic>Amaranthus - drug effects</topic><topic>Amaranthus - enzymology</topic><topic>Amaranthus - genetics</topic><topic>Amaranthus palmeri</topic><topic>Amplification</topic><topic>Antibiotics</topic><topic>Biological Sciences</topic><topic>Cell division</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant</topic><topic>Circular DNA</topic><topic>Copy number</topic><topic>Crops</topic><topic>Cytotoxicity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Circular</topic><topic>Environmental conditions</topic><topic>Eukaryotes</topic><topic>Gene Amplification</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Germ cells</topic><topic>Glycine</topic><topic>Glycine - analogs &amp; derivatives</topic><topic>Glycine - pharmacology</topic><topic>Glyphosate</topic><topic>Herbicide resistance</topic><topic>Herbicide Resistance - genetics</topic><topic>Herbicides</topic><topic>Herbicides - pharmacology</topic><topic>Heredity</topic><topic>Meiosis</topic><topic>Mitosis</topic><topic>Pesticides</topic><topic>Plant resistance</topic><topic>Progeny</topic><topic>Replicating</topic><topic>Tethering</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koo, Dal-Hoe</creatorcontrib><creatorcontrib>Molin, William T.</creatorcontrib><creatorcontrib>Saski, Christopher A.</creatorcontrib><creatorcontrib>Jiang, Jiming</creatorcontrib><creatorcontrib>Putta, Karthik</creatorcontrib><creatorcontrib>Jugulam, Mithila</creatorcontrib><creatorcontrib>Friebe, Bernd</creatorcontrib><creatorcontrib>Gill, Bikram S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koo, Dal-Hoe</au><au>Molin, William T.</au><au>Saski, Christopher A.</au><au>Jiang, Jiming</au><au>Putta, Karthik</au><au>Jugulam, Mithila</au><au>Friebe, Bernd</au><au>Gill, Bikram S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-03-27</date><risdate>2018</risdate><volume>115</volume><issue>13</issue><spage>3332</spage><epage>3337</epage><pages>3332-3337</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Gene amplification has been observed in many bacteria and eukaryotes as a response to various selective pressures, such as antibiotics, cytotoxic drugs, pesticides, herbicides, and other stressful environmental conditions. An increase in gene copy number is often found as extrachromosomal elements that usually contain autonomously replicating extrachromosomal circular DNA molecules (eccDNAs). Amaranthus palmeri, a crop weed, can develop herbicide resistance to glyphosate [N-(phosphonomethyl) glycine] by amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the molecular target of glyphosate. However, biological questions regarding the source of the amplified EPSPS, the nature of the amplified DNA structures, and mechanisms responsible for maintaining this gene amplification in cells and their inheritance remain unknown. Here, we report that amplified EPSPS copies in glyphosate-resistant (GR) A. palmeri are present in the form of eccDNAs with various conformations. The eccDNAs are transmitted during cell division in mitosis and meiosis to the soma and germ cells and the progeny by an as yet unknown mechanism of tethering to mitotic and meiotic chromosomes. We propose that eccDNAs are one of the components of McClintock’s postulated innate systems [McClintock B (1978) Stadler Genetics Symposium] that can rapidly produce soma variation, amplify EPSPS genes in the sporophyte that are transmitted to germ cells, and modulate rapid glyphosate resistance through genome plasticity and adaptive evolution.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29531028</pmid><doi>10.1073/pnas.1719354115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2065-9067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (13), p.3332-3337
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5879691
source PubMed Central Free; MEDLINE; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 3-Phosphoshikimate 1-Carboxyvinyltransferase - genetics
Amaranthus - drug effects
Amaranthus - enzymology
Amaranthus - genetics
Amaranthus palmeri
Amplification
Antibiotics
Biological Sciences
Cell division
Chromosomes
Chromosomes, Plant
Circular DNA
Copy number
Crops
Cytotoxicity
Deoxyribonucleic acid
DNA
DNA, Circular
Environmental conditions
Eukaryotes
Gene Amplification
Gene Expression Regulation, Plant
Genetics
Genomes
Germ cells
Glycine
Glycine - analogs & derivatives
Glycine - pharmacology
Glyphosate
Herbicide resistance
Herbicide Resistance - genetics
Herbicides
Herbicides - pharmacology
Heredity
Meiosis
Mitosis
Pesticides
Plant resistance
Progeny
Replicating
Tethering
Weeds
title Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extrachromosomal%20circular%20DNA-based%20amplification%20and%20transmission%20of%20herbicide%20resistance%20in%20crop%20weed%20Amaranthus%20palmeri&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Koo,%20Dal-Hoe&rft.date=2018-03-27&rft.volume=115&rft.issue=13&rft.spage=3332&rft.epage=3337&rft.pages=3332-3337&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1719354115&rft_dat=%3Cjstor_pubme%3E26508227%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101331851&rft_id=info:pmid/29531028&rft_jstor_id=26508227&rfr_iscdi=true