Universal linear and nonlinear electrodynamics of a Dirac fluid

A general relation is derived between the linear and second-order nonlinear ac conductivities of an electron system in the hydrodynamic regime of frequencies below the interparticle scattering rate. The magnitude and tensorial structure of the hydrodynamic nonlinear conductivity are shown to differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-03, Vol.115 (13), p.3285-3289
Hauptverfasser: Sun, Zhiyuan, Basov, Dmitry N., Fogler, Michael M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3289
container_issue 13
container_start_page 3285
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Sun, Zhiyuan
Basov, Dmitry N.
Fogler, Michael M.
description A general relation is derived between the linear and second-order nonlinear ac conductivities of an electron system in the hydrodynamic regime of frequencies below the interparticle scattering rate. The magnitude and tensorial structure of the hydrodynamic nonlinear conductivity are shown to differ from their counterparts in the more familiar kinetic regime of higher frequencies. Due to universality of the hydrodynamic equations, the obtained formulas are valid for systems with an arbitrary Dirac-like dispersion, ranging from solid-state electron gases to free-space plasmas, either massive or massless, at any temperature, chemical potential, or space dimension. Predictions for photon drag and second-harmonic generation in graphene are presented as one application of this theory.
doi_str_mv 10.1073/pnas.1717010115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5879671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508219</jstor_id><sourcerecordid>26508219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-4d06b36ce6420c0878d85c2bdfc3579e61ea8620060801f09989a00a911b56ae3</originalsourceid><addsrcrecordid>eNpdkc9PHCEUx4mpqav27KnNpF68jL4HAwMXG-PvxMRLPROWYSqbWdjCjIn_vZjdavVEyPu8L-_xIeQA4RihZSerYPIxttgCAiLfIjMEhbVoFHwhMwDa1rKhzQ7ZzXkBAIpL-Ep2qOKs9OOM_HoI_smlbIZq8MGZVJnQVSGGzc0Nzo4pds_BLL3NVewrU134ZGzVD5Pv9sl2b4bsvm3OPfJwdfn7_Ka-u7--PT-7qy1nYqybDsScCetEQ8GCbGUnuaXzrreMt8oJdEYKCiBAAvaglFQGwCjEORfGsT1yus5dTfOl66wLYzKDXiW_NOlZR-P1x0rwj_pPfNJctkq0WAJ-rgNiHr3O1o_OPtoYQtlPY0M5b1iBjjavpPh3cnnUS5-tGwYTXJyypoCMoxQcCnr4CV3EKYXyB5oWF4w1ktFCnawpm2LOyfVvEyPoV4P61aB-N1g6fvy_6Bv_T1kBvq-BRR5jeq-XoSRFxV4AvZufNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101334832</pqid></control><display><type>article</type><title>Universal linear and nonlinear electrodynamics of a Dirac fluid</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sun, Zhiyuan ; Basov, Dmitry N. ; Fogler, Michael M.</creator><creatorcontrib>Sun, Zhiyuan ; Basov, Dmitry N. ; Fogler, Michael M. ; Columbia Univ., New York, NY (United States)</creatorcontrib><description>A general relation is derived between the linear and second-order nonlinear ac conductivities of an electron system in the hydrodynamic regime of frequencies below the interparticle scattering rate. The magnitude and tensorial structure of the hydrodynamic nonlinear conductivity are shown to differ from their counterparts in the more familiar kinetic regime of higher frequencies. Due to universality of the hydrodynamic equations, the obtained formulas are valid for systems with an arbitrary Dirac-like dispersion, ranging from solid-state electron gases to free-space plasmas, either massive or massless, at any temperature, chemical potential, or space dimension. Predictions for photon drag and second-harmonic generation in graphene are presented as one application of this theory.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1717010115</identifier><identifier>PMID: 29531071</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Chemical potential ; Dirac fermions ; Electrodynamics ; Fluid mechanics ; Gases ; graphene ; Hydrodynamic equations ; hydrodynamics ; nonlinear optics ; Nonlinear systems ; optical conductivity ; Optics ; Organic chemistry ; Other Topics ; Physical Sciences ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Science &amp; Technology ; Second harmonic generation ; Space plasmas</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (13), p.3285-3289</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 27, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-4d06b36ce6420c0878d85c2bdfc3579e61ea8620060801f09989a00a911b56ae3</citedby><cites>FETCH-LOGICAL-c536t-4d06b36ce6420c0878d85c2bdfc3579e61ea8620060801f09989a00a911b56ae3</cites><orcidid>0000-0001-8239-7221 ; 0000-0002-0342-6248 ; 0000000203426248 ; 0000000182397221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508219$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508219$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29531071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1425543$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Zhiyuan</creatorcontrib><creatorcontrib>Basov, Dmitry N.</creatorcontrib><creatorcontrib>Fogler, Michael M.</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><title>Universal linear and nonlinear electrodynamics of a Dirac fluid</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A general relation is derived between the linear and second-order nonlinear ac conductivities of an electron system in the hydrodynamic regime of frequencies below the interparticle scattering rate. The magnitude and tensorial structure of the hydrodynamic nonlinear conductivity are shown to differ from their counterparts in the more familiar kinetic regime of higher frequencies. Due to universality of the hydrodynamic equations, the obtained formulas are valid for systems with an arbitrary Dirac-like dispersion, ranging from solid-state electron gases to free-space plasmas, either massive or massless, at any temperature, chemical potential, or space dimension. Predictions for photon drag and second-harmonic generation in graphene are presented as one application of this theory.</description><subject>Chemical potential</subject><subject>Dirac fermions</subject><subject>Electrodynamics</subject><subject>Fluid mechanics</subject><subject>Gases</subject><subject>graphene</subject><subject>Hydrodynamic equations</subject><subject>hydrodynamics</subject><subject>nonlinear optics</subject><subject>Nonlinear systems</subject><subject>optical conductivity</subject><subject>Optics</subject><subject>Organic chemistry</subject><subject>Other Topics</subject><subject>Physical Sciences</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Science &amp; Technology</subject><subject>Second harmonic generation</subject><subject>Space plasmas</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc9PHCEUx4mpqav27KnNpF68jL4HAwMXG-PvxMRLPROWYSqbWdjCjIn_vZjdavVEyPu8L-_xIeQA4RihZSerYPIxttgCAiLfIjMEhbVoFHwhMwDa1rKhzQ7ZzXkBAIpL-Ep2qOKs9OOM_HoI_smlbIZq8MGZVJnQVSGGzc0Nzo4pds_BLL3NVewrU134ZGzVD5Pv9sl2b4bsvm3OPfJwdfn7_Ka-u7--PT-7qy1nYqybDsScCetEQ8GCbGUnuaXzrreMt8oJdEYKCiBAAvaglFQGwCjEORfGsT1yus5dTfOl66wLYzKDXiW_NOlZR-P1x0rwj_pPfNJctkq0WAJ-rgNiHr3O1o_OPtoYQtlPY0M5b1iBjjavpPh3cnnUS5-tGwYTXJyypoCMoxQcCnr4CV3EKYXyB5oWF4w1ktFCnawpm2LOyfVvEyPoV4P61aB-N1g6fvy_6Bv_T1kBvq-BRR5jeq-XoSRFxV4AvZufNw</recordid><startdate>20180327</startdate><enddate>20180327</enddate><creator>Sun, Zhiyuan</creator><creator>Basov, Dmitry N.</creator><creator>Fogler, Michael M.</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8239-7221</orcidid><orcidid>https://orcid.org/0000-0002-0342-6248</orcidid><orcidid>https://orcid.org/0000000203426248</orcidid><orcidid>https://orcid.org/0000000182397221</orcidid></search><sort><creationdate>20180327</creationdate><title>Universal linear and nonlinear electrodynamics of a Dirac fluid</title><author>Sun, Zhiyuan ; Basov, Dmitry N. ; Fogler, Michael M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-4d06b36ce6420c0878d85c2bdfc3579e61ea8620060801f09989a00a911b56ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical potential</topic><topic>Dirac fermions</topic><topic>Electrodynamics</topic><topic>Fluid mechanics</topic><topic>Gases</topic><topic>graphene</topic><topic>Hydrodynamic equations</topic><topic>hydrodynamics</topic><topic>nonlinear optics</topic><topic>Nonlinear systems</topic><topic>optical conductivity</topic><topic>Optics</topic><topic>Organic chemistry</topic><topic>Other Topics</topic><topic>Physical Sciences</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Science &amp; Technology</topic><topic>Second harmonic generation</topic><topic>Space plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhiyuan</creatorcontrib><creatorcontrib>Basov, Dmitry N.</creatorcontrib><creatorcontrib>Fogler, Michael M.</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhiyuan</au><au>Basov, Dmitry N.</au><au>Fogler, Michael M.</au><aucorp>Columbia Univ., New York, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal linear and nonlinear electrodynamics of a Dirac fluid</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-03-27</date><risdate>2018</risdate><volume>115</volume><issue>13</issue><spage>3285</spage><epage>3289</epage><pages>3285-3289</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A general relation is derived between the linear and second-order nonlinear ac conductivities of an electron system in the hydrodynamic regime of frequencies below the interparticle scattering rate. The magnitude and tensorial structure of the hydrodynamic nonlinear conductivity are shown to differ from their counterparts in the more familiar kinetic regime of higher frequencies. Due to universality of the hydrodynamic equations, the obtained formulas are valid for systems with an arbitrary Dirac-like dispersion, ranging from solid-state electron gases to free-space plasmas, either massive or massless, at any temperature, chemical potential, or space dimension. Predictions for photon drag and second-harmonic generation in graphene are presented as one application of this theory.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29531071</pmid><doi>10.1073/pnas.1717010115</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8239-7221</orcidid><orcidid>https://orcid.org/0000-0002-0342-6248</orcidid><orcidid>https://orcid.org/0000000203426248</orcidid><orcidid>https://orcid.org/0000000182397221</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (13), p.3285-3289
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5879671
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Chemical potential
Dirac fermions
Electrodynamics
Fluid mechanics
Gases
graphene
Hydrodynamic equations
hydrodynamics
nonlinear optics
Nonlinear systems
optical conductivity
Optics
Organic chemistry
Other Topics
Physical Sciences
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Science & Technology
Second harmonic generation
Space plasmas
title Universal linear and nonlinear electrodynamics of a Dirac fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20linear%20and%20nonlinear%20electrodynamics%20of%20a%20Dirac%20fluid&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sun,%20Zhiyuan&rft.aucorp=Columbia%20Univ.,%20New%20York,%20NY%20(United%20States)&rft.date=2018-03-27&rft.volume=115&rft.issue=13&rft.spage=3285&rft.epage=3289&rft.pages=3285-3289&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1717010115&rft_dat=%3Cjstor_pubme%3E26508219%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101334832&rft_id=info:pmid/29531071&rft_jstor_id=26508219&rfr_iscdi=true