Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members ALK1 , ENG and SMAD4 lead to HHT. However, a Smad4 mouse model of HHT does...
Gespeichert in:
Veröffentlicht in: | Angiogenesis (London) 2018-05, Vol.21 (2), p.363-380 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 380 |
---|---|
container_issue | 2 |
container_start_page | 363 |
container_title | Angiogenesis (London) |
container_volume | 21 |
creator | Crist, Angela M. Lee, Amanda R. Patel, Nehal R. Westhoff, Dawn E. Meadows, Stryder M. |
description | Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members
ALK1
,
ENG
and
SMAD4
lead to HHT. However, a
Smad4
mouse model of HHT does not currently exist. We aimed to create and characterize a
Smad4
endothelial cell (EC)-specific, inducible knockout mouse (
Smad4
f/f
;
Cdh5
-Cre
ERT2
) that could be used to study AVM development in HHT. We found that postnatal ablation of
Smad4
caused various vascular defects, including the formation of distinct AVMs in the neonate retina. Our analyses demonstrated that increased EC proliferation and size, altered mural cell coverage and distorted artery–vein gene expression are associated with
Smad4
deficiency in the vasculature. Furthermore, we show that depletion of
Smad4
leads to decreased
Vegfr2
expression, and concurrent loss of endothelial
Smad4
and
Vegfr2
in vivo leads to AVM enlargement. Our work provides a new model in which to study HHT-associated phenotypes and links the TGFβ and VEGF signaling pathways in AVM pathogenesis. |
doi_str_mv | 10.1007/s10456-018-9602-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5878194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007114916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-d5cadb86700070b9a0f741327062044886b8bf603f7c44b3ddf8e8f6c43e44483</originalsourceid><addsrcrecordid>eNp1UU1rFTEUDaLYZ_UHuJGAGzdjb2Yy-XAhSFErFLpodRsyyc1rysykJjOV_nvzfLVawU0S7jn35BwOIS8ZvGUA8qgw4L1ogKlGC2gbeEQ2rJddI1vQj8kGtNCN0BIOyLNSrgDqQPGn5KDVXAAotSE_vtni1tFm6jFEF3F2tzQFej5Zz6mza8FCbV4wx3SDc1oLnewYUp7sEtNc3lFLpzrFenocd6snmNHHxebb-pxSzpd2Gx29wNHO24husSXa5-RJsGPBF3f3Ifn66ePF8Ulzevb5y_GH08ZxCUvje2f9oISs3iUM2kKQnHWtBNEC50qJQQ1BQBek43zovA8KVRCOd8gr3h2S93vd63WY0Ducl2xHc53jVA2aZKN5iMzx0mzTjemVVEzzKvDmTiCn7yuWxUyxOBxrGKy5TVuNMcY1E5X6-h_qVVrzXOPtWF3bc_lLkO1ZLqdSMoZ7MwzMrlazr9XUWs2uVgN159XfKe43fvdYCe2eUCo0bzH_-fr_qj8B0tCvcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2003254794</pqid></control><display><type>article</type><title>Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia</title><source>SpringerLink Journals - AutoHoldings</source><creator>Crist, Angela M. ; Lee, Amanda R. ; Patel, Nehal R. ; Westhoff, Dawn E. ; Meadows, Stryder M.</creator><creatorcontrib>Crist, Angela M. ; Lee, Amanda R. ; Patel, Nehal R. ; Westhoff, Dawn E. ; Meadows, Stryder M.</creatorcontrib><description>Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members
ALK1
,
ENG
and
SMAD4
lead to HHT. However, a
Smad4
mouse model of HHT does not currently exist. We aimed to create and characterize a
Smad4
endothelial cell (EC)-specific, inducible knockout mouse (
Smad4
f/f
;
Cdh5
-Cre
ERT2
) that could be used to study AVM development in HHT. We found that postnatal ablation of
Smad4
caused various vascular defects, including the formation of distinct AVMs in the neonate retina. Our analyses demonstrated that increased EC proliferation and size, altered mural cell coverage and distorted artery–vein gene expression are associated with
Smad4
deficiency in the vasculature. Furthermore, we show that depletion of
Smad4
leads to decreased
Vegfr2
expression, and concurrent loss of endothelial
Smad4
and
Vegfr2
in vivo leads to AVM enlargement. Our work provides a new model in which to study HHT-associated phenotypes and links the TGFβ and VEGF signaling pathways in AVM pathogenesis.</description><identifier>ISSN: 0969-6970</identifier><identifier>EISSN: 1573-7209</identifier><identifier>DOI: 10.1007/s10456-018-9602-0</identifier><identifier>PMID: 29460088</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Arteries ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cardiology ; Cell Biology ; Cell size ; Endothelial cells ; Enlargement ; Gene expression ; Hemorrhage ; Hereditary diseases ; Hereditary hemorrhagic telangiectasia ; Mutation ; Oncology ; Ophthalmology ; Original Paper ; Pathogenesis ; Retina ; Signaling ; Smad4 protein ; Vascular endothelial growth factor ; Vein gene</subject><ispartof>Angiogenesis (London), 2018-05, Vol.21 (2), p.363-380</ispartof><rights>The Author(s) 2018</rights><rights>Angiogenesis is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-d5cadb86700070b9a0f741327062044886b8bf603f7c44b3ddf8e8f6c43e44483</citedby><cites>FETCH-LOGICAL-c470t-d5cadb86700070b9a0f741327062044886b8bf603f7c44b3ddf8e8f6c43e44483</cites><orcidid>0000-0003-0968-7155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10456-018-9602-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10456-018-9602-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29460088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crist, Angela M.</creatorcontrib><creatorcontrib>Lee, Amanda R.</creatorcontrib><creatorcontrib>Patel, Nehal R.</creatorcontrib><creatorcontrib>Westhoff, Dawn E.</creatorcontrib><creatorcontrib>Meadows, Stryder M.</creatorcontrib><title>Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia</title><title>Angiogenesis (London)</title><addtitle>Angiogenesis</addtitle><addtitle>Angiogenesis</addtitle><description>Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members
ALK1
,
ENG
and
SMAD4
lead to HHT. However, a
Smad4
mouse model of HHT does not currently exist. We aimed to create and characterize a
Smad4
endothelial cell (EC)-specific, inducible knockout mouse (
Smad4
f/f
;
Cdh5
-Cre
ERT2
) that could be used to study AVM development in HHT. We found that postnatal ablation of
Smad4
caused various vascular defects, including the formation of distinct AVMs in the neonate retina. Our analyses demonstrated that increased EC proliferation and size, altered mural cell coverage and distorted artery–vein gene expression are associated with
Smad4
deficiency in the vasculature. Furthermore, we show that depletion of
Smad4
leads to decreased
Vegfr2
expression, and concurrent loss of endothelial
Smad4
and
Vegfr2
in vivo leads to AVM enlargement. Our work provides a new model in which to study HHT-associated phenotypes and links the TGFβ and VEGF signaling pathways in AVM pathogenesis.</description><subject>Arteries</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cardiology</subject><subject>Cell Biology</subject><subject>Cell size</subject><subject>Endothelial cells</subject><subject>Enlargement</subject><subject>Gene expression</subject><subject>Hemorrhage</subject><subject>Hereditary diseases</subject><subject>Hereditary hemorrhagic telangiectasia</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Ophthalmology</subject><subject>Original Paper</subject><subject>Pathogenesis</subject><subject>Retina</subject><subject>Signaling</subject><subject>Smad4 protein</subject><subject>Vascular endothelial growth factor</subject><subject>Vein gene</subject><issn>0969-6970</issn><issn>1573-7209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1UU1rFTEUDaLYZ_UHuJGAGzdjb2Yy-XAhSFErFLpodRsyyc1rysykJjOV_nvzfLVawU0S7jn35BwOIS8ZvGUA8qgw4L1ogKlGC2gbeEQ2rJddI1vQj8kGtNCN0BIOyLNSrgDqQPGn5KDVXAAotSE_vtni1tFm6jFEF3F2tzQFej5Zz6mza8FCbV4wx3SDc1oLnewYUp7sEtNc3lFLpzrFenocd6snmNHHxebb-pxSzpd2Gx29wNHO24husSXa5-RJsGPBF3f3Ifn66ePF8Ulzevb5y_GH08ZxCUvje2f9oISs3iUM2kKQnHWtBNEC50qJQQ1BQBek43zovA8KVRCOd8gr3h2S93vd63WY0Ducl2xHc53jVA2aZKN5iMzx0mzTjemVVEzzKvDmTiCn7yuWxUyxOBxrGKy5TVuNMcY1E5X6-h_qVVrzXOPtWF3bc_lLkO1ZLqdSMoZ7MwzMrlazr9XUWs2uVgN159XfKe43fvdYCe2eUCo0bzH_-fr_qj8B0tCvcA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Crist, Angela M.</creator><creator>Lee, Amanda R.</creator><creator>Patel, Nehal R.</creator><creator>Westhoff, Dawn E.</creator><creator>Meadows, Stryder M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0968-7155</orcidid></search><sort><creationdate>20180501</creationdate><title>Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia</title><author>Crist, Angela M. ; Lee, Amanda R. ; Patel, Nehal R. ; Westhoff, Dawn E. ; Meadows, Stryder M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-d5cadb86700070b9a0f741327062044886b8bf603f7c44b3ddf8e8f6c43e44483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arteries</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cardiology</topic><topic>Cell Biology</topic><topic>Cell size</topic><topic>Endothelial cells</topic><topic>Enlargement</topic><topic>Gene expression</topic><topic>Hemorrhage</topic><topic>Hereditary diseases</topic><topic>Hereditary hemorrhagic telangiectasia</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Ophthalmology</topic><topic>Original Paper</topic><topic>Pathogenesis</topic><topic>Retina</topic><topic>Signaling</topic><topic>Smad4 protein</topic><topic>Vascular endothelial growth factor</topic><topic>Vein gene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crist, Angela M.</creatorcontrib><creatorcontrib>Lee, Amanda R.</creatorcontrib><creatorcontrib>Patel, Nehal R.</creatorcontrib><creatorcontrib>Westhoff, Dawn E.</creatorcontrib><creatorcontrib>Meadows, Stryder M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angiogenesis (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crist, Angela M.</au><au>Lee, Amanda R.</au><au>Patel, Nehal R.</au><au>Westhoff, Dawn E.</au><au>Meadows, Stryder M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia</atitle><jtitle>Angiogenesis (London)</jtitle><stitle>Angiogenesis</stitle><addtitle>Angiogenesis</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>21</volume><issue>2</issue><spage>363</spage><epage>380</epage><pages>363-380</pages><issn>0969-6970</issn><eissn>1573-7209</eissn><abstract>Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members
ALK1
,
ENG
and
SMAD4
lead to HHT. However, a
Smad4
mouse model of HHT does not currently exist. We aimed to create and characterize a
Smad4
endothelial cell (EC)-specific, inducible knockout mouse (
Smad4
f/f
;
Cdh5
-Cre
ERT2
) that could be used to study AVM development in HHT. We found that postnatal ablation of
Smad4
caused various vascular defects, including the formation of distinct AVMs in the neonate retina. Our analyses demonstrated that increased EC proliferation and size, altered mural cell coverage and distorted artery–vein gene expression are associated with
Smad4
deficiency in the vasculature. Furthermore, we show that depletion of
Smad4
leads to decreased
Vegfr2
expression, and concurrent loss of endothelial
Smad4
and
Vegfr2
in vivo leads to AVM enlargement. Our work provides a new model in which to study HHT-associated phenotypes and links the TGFβ and VEGF signaling pathways in AVM pathogenesis.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>29460088</pmid><doi>10.1007/s10456-018-9602-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0968-7155</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-6970 |
ispartof | Angiogenesis (London), 2018-05, Vol.21 (2), p.363-380 |
issn | 0969-6970 1573-7209 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5878194 |
source | SpringerLink Journals - AutoHoldings |
subjects | Arteries Biomedical and Life Sciences Biomedicine Cancer Research Cardiology Cell Biology Cell size Endothelial cells Enlargement Gene expression Hemorrhage Hereditary diseases Hereditary hemorrhagic telangiectasia Mutation Oncology Ophthalmology Original Paper Pathogenesis Retina Signaling Smad4 protein Vascular endothelial growth factor Vein gene |
title | Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20deficiency%20of%20Smad4%20causes%20arteriovenous%20malformations:%20a%20mouse%20model%20of%20Hereditary%20Hemorrhagic%20Telangiectasia&rft.jtitle=Angiogenesis%20(London)&rft.au=Crist,%20Angela%20M.&rft.date=2018-05-01&rft.volume=21&rft.issue=2&rft.spage=363&rft.epage=380&rft.pages=363-380&rft.issn=0969-6970&rft.eissn=1573-7209&rft_id=info:doi/10.1007/s10456-018-9602-0&rft_dat=%3Cproquest_pubme%3E2007114916%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2003254794&rft_id=info:pmid/29460088&rfr_iscdi=true |