Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members ALK1 , ENG and SMAD4 lead to HHT. However, a Smad4 mouse model of HHT does...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angiogenesis (London) 2018-05, Vol.21 (2), p.363-380
Hauptverfasser: Crist, Angela M., Lee, Amanda R., Patel, Nehal R., Westhoff, Dawn E., Meadows, Stryder M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 2
container_start_page 363
container_title Angiogenesis (London)
container_volume 21
creator Crist, Angela M.
Lee, Amanda R.
Patel, Nehal R.
Westhoff, Dawn E.
Meadows, Stryder M.
description Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members ALK1 , ENG and SMAD4 lead to HHT. However, a Smad4 mouse model of HHT does not currently exist. We aimed to create and characterize a Smad4 endothelial cell (EC)-specific, inducible knockout mouse ( Smad4 f/f ; Cdh5 -Cre ERT2 ) that could be used to study AVM development in HHT. We found that postnatal ablation of Smad4 caused various vascular defects, including the formation of distinct AVMs in the neonate retina. Our analyses demonstrated that increased EC proliferation and size, altered mural cell coverage and distorted artery–vein gene expression are associated with Smad4 deficiency in the vasculature. Furthermore, we show that depletion of Smad4 leads to decreased Vegfr2 expression, and concurrent loss of endothelial Smad4 and Vegfr2 in vivo leads to AVM enlargement. Our work provides a new model in which to study HHT-associated phenotypes and links the TGFβ and VEGF signaling pathways in AVM pathogenesis.
doi_str_mv 10.1007/s10456-018-9602-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5878194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007114916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-d5cadb86700070b9a0f741327062044886b8bf603f7c44b3ddf8e8f6c43e44483</originalsourceid><addsrcrecordid>eNp1UU1rFTEUDaLYZ_UHuJGAGzdjb2Yy-XAhSFErFLpodRsyyc1rysykJjOV_nvzfLVawU0S7jn35BwOIS8ZvGUA8qgw4L1ogKlGC2gbeEQ2rJddI1vQj8kGtNCN0BIOyLNSrgDqQPGn5KDVXAAotSE_vtni1tFm6jFEF3F2tzQFej5Zz6mza8FCbV4wx3SDc1oLnewYUp7sEtNc3lFLpzrFenocd6snmNHHxebb-pxSzpd2Gx29wNHO24husSXa5-RJsGPBF3f3Ifn66ePF8Ulzevb5y_GH08ZxCUvje2f9oISs3iUM2kKQnHWtBNEC50qJQQ1BQBek43zovA8KVRCOd8gr3h2S93vd63WY0Ducl2xHc53jVA2aZKN5iMzx0mzTjemVVEzzKvDmTiCn7yuWxUyxOBxrGKy5TVuNMcY1E5X6-h_qVVrzXOPtWF3bc_lLkO1ZLqdSMoZ7MwzMrlazr9XUWs2uVgN159XfKe43fvdYCe2eUCo0bzH_-fr_qj8B0tCvcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2003254794</pqid></control><display><type>article</type><title>Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia</title><source>SpringerLink Journals - AutoHoldings</source><creator>Crist, Angela M. ; Lee, Amanda R. ; Patel, Nehal R. ; Westhoff, Dawn E. ; Meadows, Stryder M.</creator><creatorcontrib>Crist, Angela M. ; Lee, Amanda R. ; Patel, Nehal R. ; Westhoff, Dawn E. ; Meadows, Stryder M.</creatorcontrib><description>Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members ALK1 , ENG and SMAD4 lead to HHT. However, a Smad4 mouse model of HHT does not currently exist. We aimed to create and characterize a Smad4 endothelial cell (EC)-specific, inducible knockout mouse ( Smad4 f/f ; Cdh5 -Cre ERT2 ) that could be used to study AVM development in HHT. We found that postnatal ablation of Smad4 caused various vascular defects, including the formation of distinct AVMs in the neonate retina. Our analyses demonstrated that increased EC proliferation and size, altered mural cell coverage and distorted artery–vein gene expression are associated with Smad4 deficiency in the vasculature. Furthermore, we show that depletion of Smad4 leads to decreased Vegfr2 expression, and concurrent loss of endothelial Smad4 and Vegfr2 in vivo leads to AVM enlargement. Our work provides a new model in which to study HHT-associated phenotypes and links the TGFβ and VEGF signaling pathways in AVM pathogenesis.</description><identifier>ISSN: 0969-6970</identifier><identifier>EISSN: 1573-7209</identifier><identifier>DOI: 10.1007/s10456-018-9602-0</identifier><identifier>PMID: 29460088</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Arteries ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cardiology ; Cell Biology ; Cell size ; Endothelial cells ; Enlargement ; Gene expression ; Hemorrhage ; Hereditary diseases ; Hereditary hemorrhagic telangiectasia ; Mutation ; Oncology ; Ophthalmology ; Original Paper ; Pathogenesis ; Retina ; Signaling ; Smad4 protein ; Vascular endothelial growth factor ; Vein gene</subject><ispartof>Angiogenesis (London), 2018-05, Vol.21 (2), p.363-380</ispartof><rights>The Author(s) 2018</rights><rights>Angiogenesis is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-d5cadb86700070b9a0f741327062044886b8bf603f7c44b3ddf8e8f6c43e44483</citedby><cites>FETCH-LOGICAL-c470t-d5cadb86700070b9a0f741327062044886b8bf603f7c44b3ddf8e8f6c43e44483</cites><orcidid>0000-0003-0968-7155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10456-018-9602-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10456-018-9602-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29460088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crist, Angela M.</creatorcontrib><creatorcontrib>Lee, Amanda R.</creatorcontrib><creatorcontrib>Patel, Nehal R.</creatorcontrib><creatorcontrib>Westhoff, Dawn E.</creatorcontrib><creatorcontrib>Meadows, Stryder M.</creatorcontrib><title>Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia</title><title>Angiogenesis (London)</title><addtitle>Angiogenesis</addtitle><addtitle>Angiogenesis</addtitle><description>Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members ALK1 , ENG and SMAD4 lead to HHT. However, a Smad4 mouse model of HHT does not currently exist. We aimed to create and characterize a Smad4 endothelial cell (EC)-specific, inducible knockout mouse ( Smad4 f/f ; Cdh5 -Cre ERT2 ) that could be used to study AVM development in HHT. We found that postnatal ablation of Smad4 caused various vascular defects, including the formation of distinct AVMs in the neonate retina. Our analyses demonstrated that increased EC proliferation and size, altered mural cell coverage and distorted artery–vein gene expression are associated with Smad4 deficiency in the vasculature. Furthermore, we show that depletion of Smad4 leads to decreased Vegfr2 expression, and concurrent loss of endothelial Smad4 and Vegfr2 in vivo leads to AVM enlargement. Our work provides a new model in which to study HHT-associated phenotypes and links the TGFβ and VEGF signaling pathways in AVM pathogenesis.</description><subject>Arteries</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cardiology</subject><subject>Cell Biology</subject><subject>Cell size</subject><subject>Endothelial cells</subject><subject>Enlargement</subject><subject>Gene expression</subject><subject>Hemorrhage</subject><subject>Hereditary diseases</subject><subject>Hereditary hemorrhagic telangiectasia</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Ophthalmology</subject><subject>Original Paper</subject><subject>Pathogenesis</subject><subject>Retina</subject><subject>Signaling</subject><subject>Smad4 protein</subject><subject>Vascular endothelial growth factor</subject><subject>Vein gene</subject><issn>0969-6970</issn><issn>1573-7209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1UU1rFTEUDaLYZ_UHuJGAGzdjb2Yy-XAhSFErFLpodRsyyc1rysykJjOV_nvzfLVawU0S7jn35BwOIS8ZvGUA8qgw4L1ogKlGC2gbeEQ2rJddI1vQj8kGtNCN0BIOyLNSrgDqQPGn5KDVXAAotSE_vtni1tFm6jFEF3F2tzQFej5Zz6mza8FCbV4wx3SDc1oLnewYUp7sEtNc3lFLpzrFenocd6snmNHHxebb-pxSzpd2Gx29wNHO24husSXa5-RJsGPBF3f3Ifn66ePF8Ulzevb5y_GH08ZxCUvje2f9oISs3iUM2kKQnHWtBNEC50qJQQ1BQBek43zovA8KVRCOd8gr3h2S93vd63WY0Ducl2xHc53jVA2aZKN5iMzx0mzTjemVVEzzKvDmTiCn7yuWxUyxOBxrGKy5TVuNMcY1E5X6-h_qVVrzXOPtWF3bc_lLkO1ZLqdSMoZ7MwzMrlazr9XUWs2uVgN159XfKe43fvdYCe2eUCo0bzH_-fr_qj8B0tCvcA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Crist, Angela M.</creator><creator>Lee, Amanda R.</creator><creator>Patel, Nehal R.</creator><creator>Westhoff, Dawn E.</creator><creator>Meadows, Stryder M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0968-7155</orcidid></search><sort><creationdate>20180501</creationdate><title>Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia</title><author>Crist, Angela M. ; Lee, Amanda R. ; Patel, Nehal R. ; Westhoff, Dawn E. ; Meadows, Stryder M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-d5cadb86700070b9a0f741327062044886b8bf603f7c44b3ddf8e8f6c43e44483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arteries</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cardiology</topic><topic>Cell Biology</topic><topic>Cell size</topic><topic>Endothelial cells</topic><topic>Enlargement</topic><topic>Gene expression</topic><topic>Hemorrhage</topic><topic>Hereditary diseases</topic><topic>Hereditary hemorrhagic telangiectasia</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Ophthalmology</topic><topic>Original Paper</topic><topic>Pathogenesis</topic><topic>Retina</topic><topic>Signaling</topic><topic>Smad4 protein</topic><topic>Vascular endothelial growth factor</topic><topic>Vein gene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crist, Angela M.</creatorcontrib><creatorcontrib>Lee, Amanda R.</creatorcontrib><creatorcontrib>Patel, Nehal R.</creatorcontrib><creatorcontrib>Westhoff, Dawn E.</creatorcontrib><creatorcontrib>Meadows, Stryder M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angiogenesis (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crist, Angela M.</au><au>Lee, Amanda R.</au><au>Patel, Nehal R.</au><au>Westhoff, Dawn E.</au><au>Meadows, Stryder M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia</atitle><jtitle>Angiogenesis (London)</jtitle><stitle>Angiogenesis</stitle><addtitle>Angiogenesis</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>21</volume><issue>2</issue><spage>363</spage><epage>380</epage><pages>363-380</pages><issn>0969-6970</issn><eissn>1573-7209</eissn><abstract>Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members ALK1 , ENG and SMAD4 lead to HHT. However, a Smad4 mouse model of HHT does not currently exist. We aimed to create and characterize a Smad4 endothelial cell (EC)-specific, inducible knockout mouse ( Smad4 f/f ; Cdh5 -Cre ERT2 ) that could be used to study AVM development in HHT. We found that postnatal ablation of Smad4 caused various vascular defects, including the formation of distinct AVMs in the neonate retina. Our analyses demonstrated that increased EC proliferation and size, altered mural cell coverage and distorted artery–vein gene expression are associated with Smad4 deficiency in the vasculature. Furthermore, we show that depletion of Smad4 leads to decreased Vegfr2 expression, and concurrent loss of endothelial Smad4 and Vegfr2 in vivo leads to AVM enlargement. Our work provides a new model in which to study HHT-associated phenotypes and links the TGFβ and VEGF signaling pathways in AVM pathogenesis.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>29460088</pmid><doi>10.1007/s10456-018-9602-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0968-7155</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-6970
ispartof Angiogenesis (London), 2018-05, Vol.21 (2), p.363-380
issn 0969-6970
1573-7209
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5878194
source SpringerLink Journals - AutoHoldings
subjects Arteries
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cardiology
Cell Biology
Cell size
Endothelial cells
Enlargement
Gene expression
Hemorrhage
Hereditary diseases
Hereditary hemorrhagic telangiectasia
Mutation
Oncology
Ophthalmology
Original Paper
Pathogenesis
Retina
Signaling
Smad4 protein
Vascular endothelial growth factor
Vein gene
title Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20deficiency%20of%20Smad4%20causes%20arteriovenous%20malformations:%20a%20mouse%20model%20of%20Hereditary%20Hemorrhagic%20Telangiectasia&rft.jtitle=Angiogenesis%20(London)&rft.au=Crist,%20Angela%20M.&rft.date=2018-05-01&rft.volume=21&rft.issue=2&rft.spage=363&rft.epage=380&rft.pages=363-380&rft.issn=0969-6970&rft.eissn=1573-7209&rft_id=info:doi/10.1007/s10456-018-9602-0&rft_dat=%3Cproquest_pubme%3E2007114916%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2003254794&rft_id=info:pmid/29460088&rfr_iscdi=true