Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions
Purpose To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue‐equivalent dielectric properties. Methods PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentration...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2018-07, Vol.80 (1), p.413-419 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 419 |
---|---|
container_issue | 1 |
container_start_page | 413 |
container_title | Magnetic resonance in medicine |
container_volume | 80 |
creator | Ianniello, Carlotta de Zwart, Jacco A. Duan, Qi Deniz, Cem M. Alon, Leeor Lee, Jae‐Seung Lattanzi, Riccardo Brown, Ryan |
description | Purpose
To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue‐equivalent dielectric properties.
Methods
PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentrations. Their dielectric properties were measured with a commercial probe and fitted to a 3D polynomial in order to establish an empirical recipe. The material's thermal properties and MR spectra were measured.
Results
The empirical polynomial recipe (available at https://www.amri.ninds.nih.gov/cgi-bin/phantomrecipe) provides the PVP and salt concentrations required for dielectric materials with permittivity and electrical conductivity values between approximately 45 and 78, and 0.1 to 2 siemens per meter, respectively, from 50 MHz to 4.5 GHz. The second‐ (solute concentrations) and seventh‐ (frequency) order polynomial recipe provided less than 2.5% relative error between the measured and target properties. PVP side peaks in the spectra were minor and unaffected by temperature changes.
Conclusion
PVP‐based phantoms are easy to prepare and nontoxic, and their semitransparency makes air bubbles easy to identify. The polymer can be used to create simulated material with a range of dielectric properties, negligible spectral side peaks, and long T2 relaxation time, which are favorable in many MR applications. Magn Reson Med 80:413–419, 2018. © 2017 International Society for Magnetic Resonance in Medicine. |
doi_str_mv | 10.1002/mrm.27005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5876111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966982679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4435-106738d889c60128bd015b983d959f6c017bce9bac142ab7581600176bcfc5c43</originalsourceid><addsrcrecordid>eNp1kc9qFTEUh4Mo9lpd-AIy4EYX056TmWSSjSBF20KL4J91yGRye1MyyTSZuTKufASfsU_SaW8tKrg6cM7Hx-_wI-QlwgEC0MM-9Qe0AWCPyAoZpSVlsn5MVtDUUFYo6z3yLOdLAJCyqZ-SPSqRSSnYiugvcxg3NrsftitGl_Nkr3_-sleT22pvw1h0znprxuRMMWx0GGOfiym7cFFk7cdCh64Yop-3Lsx-mFOK3nUx2CJHP40uhvycPFlrn-2L-7lPvn388PXopDz7dHx69P6sNHVdsRKBN5XohJCGA1LRdoCslaLqJJNrbgCb1ljZaoM11W3DBHJYlrw1a8NMXe2TdzvvMLW97cwSPmmvhuR6nWYVtVN_X4LbqIu4VUw0HBEXwZt7QYpXk82j6l021nsdbJyyQsm5FJQ3ckFf_4NeximF5T1FASXjDPltorc7yqSYc7LrhzAI6rY4tRSn7opb2Fd_pn8gfze1AIc74Lvzdv6_SZ1_Pt8pbwCvoqZG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019565164</pqid></control><display><type>article</type><title>Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Ianniello, Carlotta ; de Zwart, Jacco A. ; Duan, Qi ; Deniz, Cem M. ; Alon, Leeor ; Lee, Jae‐Seung ; Lattanzi, Riccardo ; Brown, Ryan</creator><creatorcontrib>Ianniello, Carlotta ; de Zwart, Jacco A. ; Duan, Qi ; Deniz, Cem M. ; Alon, Leeor ; Lee, Jae‐Seung ; Lattanzi, Riccardo ; Brown, Ryan</creatorcontrib><description>Purpose
To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue‐equivalent dielectric properties.
Methods
PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentrations. Their dielectric properties were measured with a commercial probe and fitted to a 3D polynomial in order to establish an empirical recipe. The material's thermal properties and MR spectra were measured.
Results
The empirical polynomial recipe (available at https://www.amri.ninds.nih.gov/cgi-bin/phantomrecipe) provides the PVP and salt concentrations required for dielectric materials with permittivity and electrical conductivity values between approximately 45 and 78, and 0.1 to 2 siemens per meter, respectively, from 50 MHz to 4.5 GHz. The second‐ (solute concentrations) and seventh‐ (frequency) order polynomial recipe provided less than 2.5% relative error between the measured and target properties. PVP side peaks in the spectra were minor and unaffected by temperature changes.
Conclusion
PVP‐based phantoms are easy to prepare and nontoxic, and their semitransparency makes air bubbles easy to identify. The polymer can be used to create simulated material with a range of dielectric properties, negligible spectral side peaks, and long T2 relaxation time, which are favorable in many MR applications. Magn Reson Med 80:413–419, 2018. © 2017 International Society for Magnetic Resonance in Medicine.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27005</identifier><identifier>PMID: 29159985</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Air bubbles ; Algorithms ; Computer Simulation ; Dielectric properties ; Dielectric relaxation ; Electric Conductivity ; Electrical conductivity ; Electrical properties ; Electrical resistivity ; Equivalence ; Error analysis ; Heart - diagnostic imaging ; High‐field MRI ; Hot Temperature ; Humans ; Magnetic resonance ; Magnetic Resonance Spectroscopy - methods ; Materials Testing ; MR phantoms ; Muscles - diagnostic imaging ; Permittivity ; Phantoms, Imaging ; Plasma Substitutes - chemistry ; Polynomials ; Polyvinylpyrrolidone ; Povidone - chemistry ; Recipes ; relative permittivity ; Relaxation time ; Reproducibility of Results ; Salts ; Solutions ; Spectra ; Temperature ; Thermal properties ; Thermodynamic properties ; tissue equivalent materials ; Water ; White Matter - diagnostic imaging</subject><ispartof>Magnetic resonance in medicine, 2018-07, Vol.80 (1), p.413-419</ispartof><rights>2017 International Society for Magnetic Resonance in Medicine</rights><rights>2017 International Society for Magnetic Resonance in Medicine.</rights><rights>2018 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4435-106738d889c60128bd015b983d959f6c017bce9bac142ab7581600176bcfc5c43</citedby><cites>FETCH-LOGICAL-c4435-106738d889c60128bd015b983d959f6c017bce9bac142ab7581600176bcfc5c43</cites><orcidid>0000-0002-8571-0663 ; 0000-0001-8809-5945 ; 0000-0002-2407-6611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.27005$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.27005$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29159985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ianniello, Carlotta</creatorcontrib><creatorcontrib>de Zwart, Jacco A.</creatorcontrib><creatorcontrib>Duan, Qi</creatorcontrib><creatorcontrib>Deniz, Cem M.</creatorcontrib><creatorcontrib>Alon, Leeor</creatorcontrib><creatorcontrib>Lee, Jae‐Seung</creatorcontrib><creatorcontrib>Lattanzi, Riccardo</creatorcontrib><creatorcontrib>Brown, Ryan</creatorcontrib><title>Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue‐equivalent dielectric properties.
Methods
PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentrations. Their dielectric properties were measured with a commercial probe and fitted to a 3D polynomial in order to establish an empirical recipe. The material's thermal properties and MR spectra were measured.
Results
The empirical polynomial recipe (available at https://www.amri.ninds.nih.gov/cgi-bin/phantomrecipe) provides the PVP and salt concentrations required for dielectric materials with permittivity and electrical conductivity values between approximately 45 and 78, and 0.1 to 2 siemens per meter, respectively, from 50 MHz to 4.5 GHz. The second‐ (solute concentrations) and seventh‐ (frequency) order polynomial recipe provided less than 2.5% relative error between the measured and target properties. PVP side peaks in the spectra were minor and unaffected by temperature changes.
Conclusion
PVP‐based phantoms are easy to prepare and nontoxic, and their semitransparency makes air bubbles easy to identify. The polymer can be used to create simulated material with a range of dielectric properties, negligible spectral side peaks, and long T2 relaxation time, which are favorable in many MR applications. Magn Reson Med 80:413–419, 2018. © 2017 International Society for Magnetic Resonance in Medicine.</description><subject>Air bubbles</subject><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Dielectric properties</subject><subject>Dielectric relaxation</subject><subject>Electric Conductivity</subject><subject>Electrical conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Equivalence</subject><subject>Error analysis</subject><subject>Heart - diagnostic imaging</subject><subject>High‐field MRI</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Materials Testing</subject><subject>MR phantoms</subject><subject>Muscles - diagnostic imaging</subject><subject>Permittivity</subject><subject>Phantoms, Imaging</subject><subject>Plasma Substitutes - chemistry</subject><subject>Polynomials</subject><subject>Polyvinylpyrrolidone</subject><subject>Povidone - chemistry</subject><subject>Recipes</subject><subject>relative permittivity</subject><subject>Relaxation time</subject><subject>Reproducibility of Results</subject><subject>Salts</subject><subject>Solutions</subject><subject>Spectra</subject><subject>Temperature</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>tissue equivalent materials</subject><subject>Water</subject><subject>White Matter - diagnostic imaging</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9qFTEUh4Mo9lpd-AIy4EYX056TmWSSjSBF20KL4J91yGRye1MyyTSZuTKufASfsU_SaW8tKrg6cM7Hx-_wI-QlwgEC0MM-9Qe0AWCPyAoZpSVlsn5MVtDUUFYo6z3yLOdLAJCyqZ-SPSqRSSnYiugvcxg3NrsftitGl_Nkr3_-sleT22pvw1h0znprxuRMMWx0GGOfiym7cFFk7cdCh64Yop-3Lsx-mFOK3nUx2CJHP40uhvycPFlrn-2L-7lPvn388PXopDz7dHx69P6sNHVdsRKBN5XohJCGA1LRdoCslaLqJJNrbgCb1ljZaoM11W3DBHJYlrw1a8NMXe2TdzvvMLW97cwSPmmvhuR6nWYVtVN_X4LbqIu4VUw0HBEXwZt7QYpXk82j6l021nsdbJyyQsm5FJQ3ckFf_4NeximF5T1FASXjDPltorc7yqSYc7LrhzAI6rY4tRSn7opb2Fd_pn8gfze1AIc74Lvzdv6_SZ1_Pt8pbwCvoqZG</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Ianniello, Carlotta</creator><creator>de Zwart, Jacco A.</creator><creator>Duan, Qi</creator><creator>Deniz, Cem M.</creator><creator>Alon, Leeor</creator><creator>Lee, Jae‐Seung</creator><creator>Lattanzi, Riccardo</creator><creator>Brown, Ryan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8571-0663</orcidid><orcidid>https://orcid.org/0000-0001-8809-5945</orcidid><orcidid>https://orcid.org/0000-0002-2407-6611</orcidid></search><sort><creationdate>201807</creationdate><title>Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions</title><author>Ianniello, Carlotta ; de Zwart, Jacco A. ; Duan, Qi ; Deniz, Cem M. ; Alon, Leeor ; Lee, Jae‐Seung ; Lattanzi, Riccardo ; Brown, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4435-106738d889c60128bd015b983d959f6c017bce9bac142ab7581600176bcfc5c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air bubbles</topic><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Dielectric properties</topic><topic>Dielectric relaxation</topic><topic>Electric Conductivity</topic><topic>Electrical conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Equivalence</topic><topic>Error analysis</topic><topic>Heart - diagnostic imaging</topic><topic>High‐field MRI</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Materials Testing</topic><topic>MR phantoms</topic><topic>Muscles - diagnostic imaging</topic><topic>Permittivity</topic><topic>Phantoms, Imaging</topic><topic>Plasma Substitutes - chemistry</topic><topic>Polynomials</topic><topic>Polyvinylpyrrolidone</topic><topic>Povidone - chemistry</topic><topic>Recipes</topic><topic>relative permittivity</topic><topic>Relaxation time</topic><topic>Reproducibility of Results</topic><topic>Salts</topic><topic>Solutions</topic><topic>Spectra</topic><topic>Temperature</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>tissue equivalent materials</topic><topic>Water</topic><topic>White Matter - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ianniello, Carlotta</creatorcontrib><creatorcontrib>de Zwart, Jacco A.</creatorcontrib><creatorcontrib>Duan, Qi</creatorcontrib><creatorcontrib>Deniz, Cem M.</creatorcontrib><creatorcontrib>Alon, Leeor</creatorcontrib><creatorcontrib>Lee, Jae‐Seung</creatorcontrib><creatorcontrib>Lattanzi, Riccardo</creatorcontrib><creatorcontrib>Brown, Ryan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ianniello, Carlotta</au><au>de Zwart, Jacco A.</au><au>Duan, Qi</au><au>Deniz, Cem M.</au><au>Alon, Leeor</au><au>Lee, Jae‐Seung</au><au>Lattanzi, Riccardo</au><au>Brown, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2018-07</date><risdate>2018</risdate><volume>80</volume><issue>1</issue><spage>413</spage><epage>419</epage><pages>413-419</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue‐equivalent dielectric properties.
Methods
PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentrations. Their dielectric properties were measured with a commercial probe and fitted to a 3D polynomial in order to establish an empirical recipe. The material's thermal properties and MR spectra were measured.
Results
The empirical polynomial recipe (available at https://www.amri.ninds.nih.gov/cgi-bin/phantomrecipe) provides the PVP and salt concentrations required for dielectric materials with permittivity and electrical conductivity values between approximately 45 and 78, and 0.1 to 2 siemens per meter, respectively, from 50 MHz to 4.5 GHz. The second‐ (solute concentrations) and seventh‐ (frequency) order polynomial recipe provided less than 2.5% relative error between the measured and target properties. PVP side peaks in the spectra were minor and unaffected by temperature changes.
Conclusion
PVP‐based phantoms are easy to prepare and nontoxic, and their semitransparency makes air bubbles easy to identify. The polymer can be used to create simulated material with a range of dielectric properties, negligible spectral side peaks, and long T2 relaxation time, which are favorable in many MR applications. Magn Reson Med 80:413–419, 2018. © 2017 International Society for Magnetic Resonance in Medicine.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29159985</pmid><doi>10.1002/mrm.27005</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8571-0663</orcidid><orcidid>https://orcid.org/0000-0001-8809-5945</orcidid><orcidid>https://orcid.org/0000-0002-2407-6611</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2018-07, Vol.80 (1), p.413-419 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5876111 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | Air bubbles Algorithms Computer Simulation Dielectric properties Dielectric relaxation Electric Conductivity Electrical conductivity Electrical properties Electrical resistivity Equivalence Error analysis Heart - diagnostic imaging High‐field MRI Hot Temperature Humans Magnetic resonance Magnetic Resonance Spectroscopy - methods Materials Testing MR phantoms Muscles - diagnostic imaging Permittivity Phantoms, Imaging Plasma Substitutes - chemistry Polynomials Polyvinylpyrrolidone Povidone - chemistry Recipes relative permittivity Relaxation time Reproducibility of Results Salts Solutions Spectra Temperature Thermal properties Thermodynamic properties tissue equivalent materials Water White Matter - diagnostic imaging |
title | Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesized%20tissue%E2%80%90equivalent%20dielectric%20phantoms%20using%20salt%20and%20polyvinylpyrrolidone%20solutions&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Ianniello,%20Carlotta&rft.date=2018-07&rft.volume=80&rft.issue=1&rft.spage=413&rft.epage=419&rft.pages=413-419&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27005&rft_dat=%3Cproquest_pubme%3E1966982679%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019565164&rft_id=info:pmid/29159985&rfr_iscdi=true |