Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions

Purpose To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue‐equivalent dielectric properties. Methods PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2018-07, Vol.80 (1), p.413-419
Hauptverfasser: Ianniello, Carlotta, de Zwart, Jacco A., Duan, Qi, Deniz, Cem M., Alon, Leeor, Lee, Jae‐Seung, Lattanzi, Riccardo, Brown, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 1
container_start_page 413
container_title Magnetic resonance in medicine
container_volume 80
creator Ianniello, Carlotta
de Zwart, Jacco A.
Duan, Qi
Deniz, Cem M.
Alon, Leeor
Lee, Jae‐Seung
Lattanzi, Riccardo
Brown, Ryan
description Purpose To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue‐equivalent dielectric properties. Methods PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentrations. Their dielectric properties were measured with a commercial probe and fitted to a 3D polynomial in order to establish an empirical recipe. The material's thermal properties and MR spectra were measured. Results The empirical polynomial recipe (available at https://www.amri.ninds.nih.gov/cgi-bin/phantomrecipe) provides the PVP and salt concentrations required for dielectric materials with permittivity and electrical conductivity values between approximately 45 and 78, and 0.1 to 2 siemens per meter, respectively, from 50 MHz to 4.5 GHz. The second‐ (solute concentrations) and seventh‐ (frequency) order polynomial recipe provided less than 2.5% relative error between the measured and target properties. PVP side peaks in the spectra were minor and unaffected by temperature changes. Conclusion PVP‐based phantoms are easy to prepare and nontoxic, and their semitransparency makes air bubbles easy to identify. The polymer can be used to create simulated material with a range of dielectric properties, negligible spectral side peaks, and long T2 relaxation time, which are favorable in many MR applications. Magn Reson Med 80:413–419, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
doi_str_mv 10.1002/mrm.27005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5876111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966982679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4435-106738d889c60128bd015b983d959f6c017bce9bac142ab7581600176bcfc5c43</originalsourceid><addsrcrecordid>eNp1kc9qFTEUh4Mo9lpd-AIy4EYX056TmWSSjSBF20KL4J91yGRye1MyyTSZuTKufASfsU_SaW8tKrg6cM7Hx-_wI-QlwgEC0MM-9Qe0AWCPyAoZpSVlsn5MVtDUUFYo6z3yLOdLAJCyqZ-SPSqRSSnYiugvcxg3NrsftitGl_Nkr3_-sleT22pvw1h0znprxuRMMWx0GGOfiym7cFFk7cdCh64Yop-3Lsx-mFOK3nUx2CJHP40uhvycPFlrn-2L-7lPvn388PXopDz7dHx69P6sNHVdsRKBN5XohJCGA1LRdoCslaLqJJNrbgCb1ljZaoM11W3DBHJYlrw1a8NMXe2TdzvvMLW97cwSPmmvhuR6nWYVtVN_X4LbqIu4VUw0HBEXwZt7QYpXk82j6l021nsdbJyyQsm5FJQ3ckFf_4NeximF5T1FASXjDPltorc7yqSYc7LrhzAI6rY4tRSn7opb2Fd_pn8gfze1AIc74Lvzdv6_SZ1_Pt8pbwCvoqZG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019565164</pqid></control><display><type>article</type><title>Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Ianniello, Carlotta ; de Zwart, Jacco A. ; Duan, Qi ; Deniz, Cem M. ; Alon, Leeor ; Lee, Jae‐Seung ; Lattanzi, Riccardo ; Brown, Ryan</creator><creatorcontrib>Ianniello, Carlotta ; de Zwart, Jacco A. ; Duan, Qi ; Deniz, Cem M. ; Alon, Leeor ; Lee, Jae‐Seung ; Lattanzi, Riccardo ; Brown, Ryan</creatorcontrib><description>Purpose To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue‐equivalent dielectric properties. Methods PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentrations. Their dielectric properties were measured with a commercial probe and fitted to a 3D polynomial in order to establish an empirical recipe. The material's thermal properties and MR spectra were measured. Results The empirical polynomial recipe (available at https://www.amri.ninds.nih.gov/cgi-bin/phantomrecipe) provides the PVP and salt concentrations required for dielectric materials with permittivity and electrical conductivity values between approximately 45 and 78, and 0.1 to 2 siemens per meter, respectively, from 50 MHz to 4.5 GHz. The second‐ (solute concentrations) and seventh‐ (frequency) order polynomial recipe provided less than 2.5% relative error between the measured and target properties. PVP side peaks in the spectra were minor and unaffected by temperature changes. Conclusion PVP‐based phantoms are easy to prepare and nontoxic, and their semitransparency makes air bubbles easy to identify. The polymer can be used to create simulated material with a range of dielectric properties, negligible spectral side peaks, and long T2 relaxation time, which are favorable in many MR applications. Magn Reson Med 80:413–419, 2018. © 2017 International Society for Magnetic Resonance in Medicine.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27005</identifier><identifier>PMID: 29159985</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Air bubbles ; Algorithms ; Computer Simulation ; Dielectric properties ; Dielectric relaxation ; Electric Conductivity ; Electrical conductivity ; Electrical properties ; Electrical resistivity ; Equivalence ; Error analysis ; Heart - diagnostic imaging ; High‐field MRI ; Hot Temperature ; Humans ; Magnetic resonance ; Magnetic Resonance Spectroscopy - methods ; Materials Testing ; MR phantoms ; Muscles - diagnostic imaging ; Permittivity ; Phantoms, Imaging ; Plasma Substitutes - chemistry ; Polynomials ; Polyvinylpyrrolidone ; Povidone - chemistry ; Recipes ; relative permittivity ; Relaxation time ; Reproducibility of Results ; Salts ; Solutions ; Spectra ; Temperature ; Thermal properties ; Thermodynamic properties ; tissue equivalent materials ; Water ; White Matter - diagnostic imaging</subject><ispartof>Magnetic resonance in medicine, 2018-07, Vol.80 (1), p.413-419</ispartof><rights>2017 International Society for Magnetic Resonance in Medicine</rights><rights>2017 International Society for Magnetic Resonance in Medicine.</rights><rights>2018 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4435-106738d889c60128bd015b983d959f6c017bce9bac142ab7581600176bcfc5c43</citedby><cites>FETCH-LOGICAL-c4435-106738d889c60128bd015b983d959f6c017bce9bac142ab7581600176bcfc5c43</cites><orcidid>0000-0002-8571-0663 ; 0000-0001-8809-5945 ; 0000-0002-2407-6611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.27005$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.27005$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29159985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ianniello, Carlotta</creatorcontrib><creatorcontrib>de Zwart, Jacco A.</creatorcontrib><creatorcontrib>Duan, Qi</creatorcontrib><creatorcontrib>Deniz, Cem M.</creatorcontrib><creatorcontrib>Alon, Leeor</creatorcontrib><creatorcontrib>Lee, Jae‐Seung</creatorcontrib><creatorcontrib>Lattanzi, Riccardo</creatorcontrib><creatorcontrib>Brown, Ryan</creatorcontrib><title>Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue‐equivalent dielectric properties. Methods PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentrations. Their dielectric properties were measured with a commercial probe and fitted to a 3D polynomial in order to establish an empirical recipe. The material's thermal properties and MR spectra were measured. Results The empirical polynomial recipe (available at https://www.amri.ninds.nih.gov/cgi-bin/phantomrecipe) provides the PVP and salt concentrations required for dielectric materials with permittivity and electrical conductivity values between approximately 45 and 78, and 0.1 to 2 siemens per meter, respectively, from 50 MHz to 4.5 GHz. The second‐ (solute concentrations) and seventh‐ (frequency) order polynomial recipe provided less than 2.5% relative error between the measured and target properties. PVP side peaks in the spectra were minor and unaffected by temperature changes. Conclusion PVP‐based phantoms are easy to prepare and nontoxic, and their semitransparency makes air bubbles easy to identify. The polymer can be used to create simulated material with a range of dielectric properties, negligible spectral side peaks, and long T2 relaxation time, which are favorable in many MR applications. Magn Reson Med 80:413–419, 2018. © 2017 International Society for Magnetic Resonance in Medicine.</description><subject>Air bubbles</subject><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Dielectric properties</subject><subject>Dielectric relaxation</subject><subject>Electric Conductivity</subject><subject>Electrical conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Equivalence</subject><subject>Error analysis</subject><subject>Heart - diagnostic imaging</subject><subject>High‐field MRI</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Materials Testing</subject><subject>MR phantoms</subject><subject>Muscles - diagnostic imaging</subject><subject>Permittivity</subject><subject>Phantoms, Imaging</subject><subject>Plasma Substitutes - chemistry</subject><subject>Polynomials</subject><subject>Polyvinylpyrrolidone</subject><subject>Povidone - chemistry</subject><subject>Recipes</subject><subject>relative permittivity</subject><subject>Relaxation time</subject><subject>Reproducibility of Results</subject><subject>Salts</subject><subject>Solutions</subject><subject>Spectra</subject><subject>Temperature</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>tissue equivalent materials</subject><subject>Water</subject><subject>White Matter - diagnostic imaging</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9qFTEUh4Mo9lpd-AIy4EYX056TmWSSjSBF20KL4J91yGRye1MyyTSZuTKufASfsU_SaW8tKrg6cM7Hx-_wI-QlwgEC0MM-9Qe0AWCPyAoZpSVlsn5MVtDUUFYo6z3yLOdLAJCyqZ-SPSqRSSnYiugvcxg3NrsftitGl_Nkr3_-sleT22pvw1h0znprxuRMMWx0GGOfiym7cFFk7cdCh64Yop-3Lsx-mFOK3nUx2CJHP40uhvycPFlrn-2L-7lPvn388PXopDz7dHx69P6sNHVdsRKBN5XohJCGA1LRdoCslaLqJJNrbgCb1ljZaoM11W3DBHJYlrw1a8NMXe2TdzvvMLW97cwSPmmvhuR6nWYVtVN_X4LbqIu4VUw0HBEXwZt7QYpXk82j6l021nsdbJyyQsm5FJQ3ckFf_4NeximF5T1FASXjDPltorc7yqSYc7LrhzAI6rY4tRSn7opb2Fd_pn8gfze1AIc74Lvzdv6_SZ1_Pt8pbwCvoqZG</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Ianniello, Carlotta</creator><creator>de Zwart, Jacco A.</creator><creator>Duan, Qi</creator><creator>Deniz, Cem M.</creator><creator>Alon, Leeor</creator><creator>Lee, Jae‐Seung</creator><creator>Lattanzi, Riccardo</creator><creator>Brown, Ryan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8571-0663</orcidid><orcidid>https://orcid.org/0000-0001-8809-5945</orcidid><orcidid>https://orcid.org/0000-0002-2407-6611</orcidid></search><sort><creationdate>201807</creationdate><title>Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions</title><author>Ianniello, Carlotta ; de Zwart, Jacco A. ; Duan, Qi ; Deniz, Cem M. ; Alon, Leeor ; Lee, Jae‐Seung ; Lattanzi, Riccardo ; Brown, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4435-106738d889c60128bd015b983d959f6c017bce9bac142ab7581600176bcfc5c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air bubbles</topic><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Dielectric properties</topic><topic>Dielectric relaxation</topic><topic>Electric Conductivity</topic><topic>Electrical conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Equivalence</topic><topic>Error analysis</topic><topic>Heart - diagnostic imaging</topic><topic>High‐field MRI</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Materials Testing</topic><topic>MR phantoms</topic><topic>Muscles - diagnostic imaging</topic><topic>Permittivity</topic><topic>Phantoms, Imaging</topic><topic>Plasma Substitutes - chemistry</topic><topic>Polynomials</topic><topic>Polyvinylpyrrolidone</topic><topic>Povidone - chemistry</topic><topic>Recipes</topic><topic>relative permittivity</topic><topic>Relaxation time</topic><topic>Reproducibility of Results</topic><topic>Salts</topic><topic>Solutions</topic><topic>Spectra</topic><topic>Temperature</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>tissue equivalent materials</topic><topic>Water</topic><topic>White Matter - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ianniello, Carlotta</creatorcontrib><creatorcontrib>de Zwart, Jacco A.</creatorcontrib><creatorcontrib>Duan, Qi</creatorcontrib><creatorcontrib>Deniz, Cem M.</creatorcontrib><creatorcontrib>Alon, Leeor</creatorcontrib><creatorcontrib>Lee, Jae‐Seung</creatorcontrib><creatorcontrib>Lattanzi, Riccardo</creatorcontrib><creatorcontrib>Brown, Ryan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ianniello, Carlotta</au><au>de Zwart, Jacco A.</au><au>Duan, Qi</au><au>Deniz, Cem M.</au><au>Alon, Leeor</au><au>Lee, Jae‐Seung</au><au>Lattanzi, Riccardo</au><au>Brown, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2018-07</date><risdate>2018</risdate><volume>80</volume><issue>1</issue><spage>413</spage><epage>419</epage><pages>413-419</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue‐equivalent dielectric properties. Methods PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentrations. Their dielectric properties were measured with a commercial probe and fitted to a 3D polynomial in order to establish an empirical recipe. The material's thermal properties and MR spectra were measured. Results The empirical polynomial recipe (available at https://www.amri.ninds.nih.gov/cgi-bin/phantomrecipe) provides the PVP and salt concentrations required for dielectric materials with permittivity and electrical conductivity values between approximately 45 and 78, and 0.1 to 2 siemens per meter, respectively, from 50 MHz to 4.5 GHz. The second‐ (solute concentrations) and seventh‐ (frequency) order polynomial recipe provided less than 2.5% relative error between the measured and target properties. PVP side peaks in the spectra were minor and unaffected by temperature changes. Conclusion PVP‐based phantoms are easy to prepare and nontoxic, and their semitransparency makes air bubbles easy to identify. The polymer can be used to create simulated material with a range of dielectric properties, negligible spectral side peaks, and long T2 relaxation time, which are favorable in many MR applications. Magn Reson Med 80:413–419, 2018. © 2017 International Society for Magnetic Resonance in Medicine.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29159985</pmid><doi>10.1002/mrm.27005</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8571-0663</orcidid><orcidid>https://orcid.org/0000-0001-8809-5945</orcidid><orcidid>https://orcid.org/0000-0002-2407-6611</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2018-07, Vol.80 (1), p.413-419
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5876111
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Air bubbles
Algorithms
Computer Simulation
Dielectric properties
Dielectric relaxation
Electric Conductivity
Electrical conductivity
Electrical properties
Electrical resistivity
Equivalence
Error analysis
Heart - diagnostic imaging
High‐field MRI
Hot Temperature
Humans
Magnetic resonance
Magnetic Resonance Spectroscopy - methods
Materials Testing
MR phantoms
Muscles - diagnostic imaging
Permittivity
Phantoms, Imaging
Plasma Substitutes - chemistry
Polynomials
Polyvinylpyrrolidone
Povidone - chemistry
Recipes
relative permittivity
Relaxation time
Reproducibility of Results
Salts
Solutions
Spectra
Temperature
Thermal properties
Thermodynamic properties
tissue equivalent materials
Water
White Matter - diagnostic imaging
title Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesized%20tissue%E2%80%90equivalent%20dielectric%20phantoms%20using%20salt%20and%20polyvinylpyrrolidone%20solutions&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Ianniello,%20Carlotta&rft.date=2018-07&rft.volume=80&rft.issue=1&rft.spage=413&rft.epage=419&rft.pages=413-419&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27005&rft_dat=%3Cproquest_pubme%3E1966982679%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019565164&rft_id=info:pmid/29159985&rfr_iscdi=true