SnapVX: A Network-Based Convex Optimization Solver

SnapVX is a high-performance solver for convex optimization problems defined on networks. For problems of this form, SnapVX provides a fast and scalable solution with guaranteed global convergence. It combines the capabilities of two open source software packages: Snap.py and CVXPY. Snap.py is a lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of machine learning research 2017, Vol.18 (1), p.110-114
Hauptverfasser: Hallac, David, Wong, Christopher, Diamond, Steven, Sharang, Abhijit, Sosič, Rok, Boyd, Stephen, Leskovec, Jure
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 1
container_start_page 110
container_title Journal of machine learning research
container_volume 18
creator Hallac, David
Wong, Christopher
Diamond, Steven
Sharang, Abhijit
Sosič, Rok
Boyd, Stephen
Leskovec, Jure
description SnapVX is a high-performance solver for convex optimization problems defined on networks. For problems of this form, SnapVX provides a fast and scalable solution with guaranteed global convergence. It combines the capabilities of two open source software packages: Snap.py and CVXPY. Snap.py is a large scale graph processing library, and CVXPY provides a general modeling framework for small-scale subproblems. SnapVX offers a customizable yet easy-to-use Python interface with "out-of-the-box" functionality. Based on the Alternating Direction Method of Multipliers (ADMM), it is able to efficiently store, analyze, parallelize, and solve large optimization problems from a variety of different applications. Documentation, examples, and more can be found on the SnapVX website at http://snap.stanford.edu/snapvx.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5870756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020482718</sourcerecordid><originalsourceid>FETCH-LOGICAL-p196t-1ca97bb9175bcd97652d7211f94bc0eda94b9836b96d7e6a6f457df36473f4153</originalsourceid><addsrcrecordid>eNpVkMtKxDAUhoMozjj6CtKlm0Bzb1wI4-ANBmcxKu5C2qQabZPatPXy9BYdRVf_gfPzfYezBaaIEQKFxNn214whpYRNwF6MT2mKBMN8F0ywZFJyKqcAr71u7u6Pk3lybbvX0D7DUx2tSRbBD_YtWTWdq92H7lzwyTpUg233wU6pq2gPNjkDt-dnN4tLuFxdXC3mS9ggyTuICi1FnsvRmRdGCs6wERihUtK8SK3RY8qM8FxyIyzXvKRMmJJwKkhJx9Nn4OSb2_R5bU1hfdfqSjWtq3X7roJ26v_Gu0f1EAbFMpEKxkfA0QbQhpfexk7VLha2qrS3oY8KpzilGRYoG6uHf12_kp9HkU89v2Vi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020482718</pqid></control><display><type>article</type><title>SnapVX: A Network-Based Convex Optimization Solver</title><source>ACM Digital Library Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hallac, David ; Wong, Christopher ; Diamond, Steven ; Sharang, Abhijit ; Sosič, Rok ; Boyd, Stephen ; Leskovec, Jure</creator><creatorcontrib>Hallac, David ; Wong, Christopher ; Diamond, Steven ; Sharang, Abhijit ; Sosič, Rok ; Boyd, Stephen ; Leskovec, Jure</creatorcontrib><description>SnapVX is a high-performance solver for convex optimization problems defined on networks. For problems of this form, SnapVX provides a fast and scalable solution with guaranteed global convergence. It combines the capabilities of two open source software packages: Snap.py and CVXPY. Snap.py is a large scale graph processing library, and CVXPY provides a general modeling framework for small-scale subproblems. SnapVX offers a customizable yet easy-to-use Python interface with "out-of-the-box" functionality. Based on the Alternating Direction Method of Multipliers (ADMM), it is able to efficiently store, analyze, parallelize, and solve large optimization problems from a variety of different applications. Documentation, examples, and more can be found on the SnapVX website at http://snap.stanford.edu/snapvx.</description><identifier>ISSN: 1532-4435</identifier><identifier>EISSN: 1533-7928</identifier><identifier>PMID: 29599649</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of machine learning research, 2017, Vol.18 (1), p.110-114</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29599649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hallac, David</creatorcontrib><creatorcontrib>Wong, Christopher</creatorcontrib><creatorcontrib>Diamond, Steven</creatorcontrib><creatorcontrib>Sharang, Abhijit</creatorcontrib><creatorcontrib>Sosič, Rok</creatorcontrib><creatorcontrib>Boyd, Stephen</creatorcontrib><creatorcontrib>Leskovec, Jure</creatorcontrib><title>SnapVX: A Network-Based Convex Optimization Solver</title><title>Journal of machine learning research</title><addtitle>J Mach Learn Res</addtitle><description>SnapVX is a high-performance solver for convex optimization problems defined on networks. For problems of this form, SnapVX provides a fast and scalable solution with guaranteed global convergence. It combines the capabilities of two open source software packages: Snap.py and CVXPY. Snap.py is a large scale graph processing library, and CVXPY provides a general modeling framework for small-scale subproblems. SnapVX offers a customizable yet easy-to-use Python interface with "out-of-the-box" functionality. Based on the Alternating Direction Method of Multipliers (ADMM), it is able to efficiently store, analyze, parallelize, and solve large optimization problems from a variety of different applications. Documentation, examples, and more can be found on the SnapVX website at http://snap.stanford.edu/snapvx.</description><issn>1532-4435</issn><issn>1533-7928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkMtKxDAUhoMozjj6CtKlm0Bzb1wI4-ANBmcxKu5C2qQabZPatPXy9BYdRVf_gfPzfYezBaaIEQKFxNn214whpYRNwF6MT2mKBMN8F0ywZFJyKqcAr71u7u6Pk3lybbvX0D7DUx2tSRbBD_YtWTWdq92H7lzwyTpUg233wU6pq2gPNjkDt-dnN4tLuFxdXC3mS9ggyTuICi1FnsvRmRdGCs6wERihUtK8SK3RY8qM8FxyIyzXvKRMmJJwKkhJx9Nn4OSb2_R5bU1hfdfqSjWtq3X7roJ26v_Gu0f1EAbFMpEKxkfA0QbQhpfexk7VLha2qrS3oY8KpzilGRYoG6uHf12_kp9HkU89v2Vi</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Hallac, David</creator><creator>Wong, Christopher</creator><creator>Diamond, Steven</creator><creator>Sharang, Abhijit</creator><creator>Sosič, Rok</creator><creator>Boyd, Stephen</creator><creator>Leskovec, Jure</creator><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2017</creationdate><title>SnapVX: A Network-Based Convex Optimization Solver</title><author>Hallac, David ; Wong, Christopher ; Diamond, Steven ; Sharang, Abhijit ; Sosič, Rok ; Boyd, Stephen ; Leskovec, Jure</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p196t-1ca97bb9175bcd97652d7211f94bc0eda94b9836b96d7e6a6f457df36473f4153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hallac, David</creatorcontrib><creatorcontrib>Wong, Christopher</creatorcontrib><creatorcontrib>Diamond, Steven</creatorcontrib><creatorcontrib>Sharang, Abhijit</creatorcontrib><creatorcontrib>Sosič, Rok</creatorcontrib><creatorcontrib>Boyd, Stephen</creatorcontrib><creatorcontrib>Leskovec, Jure</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of machine learning research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hallac, David</au><au>Wong, Christopher</au><au>Diamond, Steven</au><au>Sharang, Abhijit</au><au>Sosič, Rok</au><au>Boyd, Stephen</au><au>Leskovec, Jure</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SnapVX: A Network-Based Convex Optimization Solver</atitle><jtitle>Journal of machine learning research</jtitle><addtitle>J Mach Learn Res</addtitle><date>2017</date><risdate>2017</risdate><volume>18</volume><issue>1</issue><spage>110</spage><epage>114</epage><pages>110-114</pages><issn>1532-4435</issn><eissn>1533-7928</eissn><abstract>SnapVX is a high-performance solver for convex optimization problems defined on networks. For problems of this form, SnapVX provides a fast and scalable solution with guaranteed global convergence. It combines the capabilities of two open source software packages: Snap.py and CVXPY. Snap.py is a large scale graph processing library, and CVXPY provides a general modeling framework for small-scale subproblems. SnapVX offers a customizable yet easy-to-use Python interface with "out-of-the-box" functionality. Based on the Alternating Direction Method of Multipliers (ADMM), it is able to efficiently store, analyze, parallelize, and solve large optimization problems from a variety of different applications. Documentation, examples, and more can be found on the SnapVX website at http://snap.stanford.edu/snapvx.</abstract><cop>United States</cop><pmid>29599649</pmid><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-4435
ispartof Journal of machine learning research, 2017, Vol.18 (1), p.110-114
issn 1532-4435
1533-7928
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5870756
source ACM Digital Library Complete; EZB-FREE-00999 freely available EZB journals
title SnapVX: A Network-Based Convex Optimization Solver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SnapVX:%20A%20Network-Based%20Convex%20Optimization%20Solver&rft.jtitle=Journal%20of%20machine%20learning%20research&rft.au=Hallac,%20David&rft.date=2017&rft.volume=18&rft.issue=1&rft.spage=110&rft.epage=114&rft.pages=110-114&rft.issn=1532-4435&rft.eissn=1533-7928&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2020482718%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020482718&rft_id=info:pmid/29599649&rfr_iscdi=true