Predicting multicellular function through multi-layer tissue networks

Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine. Here, we present OhmNet , a hierarchy-aware unsupervised node feature l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2017-07, Vol.33 (14), p.i190-i198
Hauptverfasser: Zitnik, Marinka, Leskovec, Jure
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page i198
container_issue 14
container_start_page i190
container_title Bioinformatics (Oxford, England)
container_volume 33
creator Zitnik, Marinka
Leskovec, Jure
description Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine. Here, we present OhmNet , a hierarchy-aware unsupervised node feature learning approach for multi-layer networks. We build a multi-layer network, where each layer represents molecular interactions in a different human tissue. OhmNet then automatically learns a mapping of proteins, represented as nodes, to a neural embedding-based low-dimensional space of features. OhmNet encourages sharing of similar features among proteins with similar network neighborhoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which generally ignores relationships between tissues, by modeling tissue organization with a rich multiscale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein interaction network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet provides more accurate predictions of cellular function than alternative approaches, and also generates more accurate hypotheses about tissue-specific protein actions. We show that taking into account the tissue hierarchy leads to improved predictive power. Remarkably, we also demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellular functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to multiscale models able to predict a range of phenotypes spanning cellular subsystems. Source code and datasets are available at http://snap.stanford.edu/ohmnet . jure@cs.stanford.edu.
doi_str_mv 10.1093/bioinformatics/btx252
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5870717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305193808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-86fa415e835ee112385bdb69808c868d192523321541ebc29d9c6d32569ce5bf3</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EoqXwCaAs2YT6ETvOBglV5SFVggWsLcdxWkNiF9sB-vekSqlgxWpGM3eO5uoCcI7gFYIFmZbGGVs738poVJiW8QtTfADGiLA8zThCh_sekhE4CeEVQkghZcdghDnnqOBsDOZPXldGRWOXSds1PUs3TddIn9Sd7cfOJnHlXbdcDeu0kRvtk2hC6HRidfx0_i2cgqNaNkGf7eoEvNzOn2f36eLx7mF2s0hVlmUx5ayWGaKaE6o1QphwWlYlKzjkijNeoaL3QAhGNEO6VLioCsUqgikrlKZlTSbgeuCuu7LVldI2etmItTet9BvhpBF_N9asxNJ9CMpzmKO8B1zuAN69dzpE0ZqwtSytdl0QmECKCtI_9K-0l-UU5ZxtqXSQKu9C8Lref4Sg2KYl_qYlhrT6u4vfdvZXP_GQb_nkmFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937517867</pqid></control><display><type>article</type><title>Predicting multicellular function through multi-layer tissue networks</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zitnik, Marinka ; Leskovec, Jure</creator><creatorcontrib>Zitnik, Marinka ; Leskovec, Jure</creatorcontrib><description>Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine. Here, we present OhmNet , a hierarchy-aware unsupervised node feature learning approach for multi-layer networks. We build a multi-layer network, where each layer represents molecular interactions in a different human tissue. OhmNet then automatically learns a mapping of proteins, represented as nodes, to a neural embedding-based low-dimensional space of features. OhmNet encourages sharing of similar features among proteins with similar network neighborhoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which generally ignores relationships between tissues, by modeling tissue organization with a rich multiscale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein interaction network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet provides more accurate predictions of cellular function than alternative approaches, and also generates more accurate hypotheses about tissue-specific protein actions. We show that taking into account the tissue hierarchy leads to improved predictive power. Remarkably, we also demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellular functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to multiscale models able to predict a range of phenotypes spanning cellular subsystems. Source code and datasets are available at http://snap.stanford.edu/ohmnet . jure@cs.stanford.edu.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btx252</identifier><identifier>PMID: 28881986</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; bioinformatics ; Computational Biology - methods ; data collection ; diagnostic techniques ; Humans ; medicine ; Organ Specificity ; organogenesis ; phenotype ; prediction ; Protein Interaction Maps ; proteins ; Software ; therapeutics ; tissues</subject><ispartof>Bioinformatics (Oxford, England), 2017-07, Vol.33 (14), p.i190-i198</ispartof><rights>The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com</rights><rights>The Author 2017. Published by Oxford University Press. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-86fa415e835ee112385bdb69808c868d192523321541ebc29d9c6d32569ce5bf3</citedby><cites>FETCH-LOGICAL-c444t-86fa415e835ee112385bdb69808c868d192523321541ebc29d9c6d32569ce5bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870717/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870717/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28881986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zitnik, Marinka</creatorcontrib><creatorcontrib>Leskovec, Jure</creatorcontrib><title>Predicting multicellular function through multi-layer tissue networks</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine. Here, we present OhmNet , a hierarchy-aware unsupervised node feature learning approach for multi-layer networks. We build a multi-layer network, where each layer represents molecular interactions in a different human tissue. OhmNet then automatically learns a mapping of proteins, represented as nodes, to a neural embedding-based low-dimensional space of features. OhmNet encourages sharing of similar features among proteins with similar network neighborhoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which generally ignores relationships between tissues, by modeling tissue organization with a rich multiscale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein interaction network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet provides more accurate predictions of cellular function than alternative approaches, and also generates more accurate hypotheses about tissue-specific protein actions. We show that taking into account the tissue hierarchy leads to improved predictive power. Remarkably, we also demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellular functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to multiscale models able to predict a range of phenotypes spanning cellular subsystems. Source code and datasets are available at http://snap.stanford.edu/ohmnet . jure@cs.stanford.edu.</description><subject>Algorithms</subject><subject>bioinformatics</subject><subject>Computational Biology - methods</subject><subject>data collection</subject><subject>diagnostic techniques</subject><subject>Humans</subject><subject>medicine</subject><subject>Organ Specificity</subject><subject>organogenesis</subject><subject>phenotype</subject><subject>prediction</subject><subject>Protein Interaction Maps</subject><subject>proteins</subject><subject>Software</subject><subject>therapeutics</subject><subject>tissues</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctOwzAQRS0EoqXwCaAs2YT6ETvOBglV5SFVggWsLcdxWkNiF9sB-vekSqlgxWpGM3eO5uoCcI7gFYIFmZbGGVs738poVJiW8QtTfADGiLA8zThCh_sekhE4CeEVQkghZcdghDnnqOBsDOZPXldGRWOXSds1PUs3TddIn9Sd7cfOJnHlXbdcDeu0kRvtk2hC6HRidfx0_i2cgqNaNkGf7eoEvNzOn2f36eLx7mF2s0hVlmUx5ayWGaKaE6o1QphwWlYlKzjkijNeoaL3QAhGNEO6VLioCsUqgikrlKZlTSbgeuCuu7LVldI2etmItTet9BvhpBF_N9asxNJ9CMpzmKO8B1zuAN69dzpE0ZqwtSytdl0QmECKCtI_9K-0l-UU5ZxtqXSQKu9C8Lref4Sg2KYl_qYlhrT6u4vfdvZXP_GQb_nkmFM</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Zitnik, Marinka</creator><creator>Leskovec, Jure</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20170715</creationdate><title>Predicting multicellular function through multi-layer tissue networks</title><author>Zitnik, Marinka ; Leskovec, Jure</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-86fa415e835ee112385bdb69808c868d192523321541ebc29d9c6d32569ce5bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>bioinformatics</topic><topic>Computational Biology - methods</topic><topic>data collection</topic><topic>diagnostic techniques</topic><topic>Humans</topic><topic>medicine</topic><topic>Organ Specificity</topic><topic>organogenesis</topic><topic>phenotype</topic><topic>prediction</topic><topic>Protein Interaction Maps</topic><topic>proteins</topic><topic>Software</topic><topic>therapeutics</topic><topic>tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zitnik, Marinka</creatorcontrib><creatorcontrib>Leskovec, Jure</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zitnik, Marinka</au><au>Leskovec, Jure</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting multicellular function through multi-layer tissue networks</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2017-07-15</date><risdate>2017</risdate><volume>33</volume><issue>14</issue><spage>i190</spage><epage>i198</epage><pages>i190-i198</pages><issn>1367-4803</issn><issn>1460-2059</issn><eissn>1367-4811</eissn><abstract>Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine. Here, we present OhmNet , a hierarchy-aware unsupervised node feature learning approach for multi-layer networks. We build a multi-layer network, where each layer represents molecular interactions in a different human tissue. OhmNet then automatically learns a mapping of proteins, represented as nodes, to a neural embedding-based low-dimensional space of features. OhmNet encourages sharing of similar features among proteins with similar network neighborhoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which generally ignores relationships between tissues, by modeling tissue organization with a rich multiscale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein interaction network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet provides more accurate predictions of cellular function than alternative approaches, and also generates more accurate hypotheses about tissue-specific protein actions. We show that taking into account the tissue hierarchy leads to improved predictive power. Remarkably, we also demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellular functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to multiscale models able to predict a range of phenotypes spanning cellular subsystems. Source code and datasets are available at http://snap.stanford.edu/ohmnet . jure@cs.stanford.edu.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28881986</pmid><doi>10.1093/bioinformatics/btx252</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2017-07, Vol.33 (14), p.i190-i198
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5870717
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
bioinformatics
Computational Biology - methods
data collection
diagnostic techniques
Humans
medicine
Organ Specificity
organogenesis
phenotype
prediction
Protein Interaction Maps
proteins
Software
therapeutics
tissues
title Predicting multicellular function through multi-layer tissue networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20multicellular%20function%20through%20multi-layer%20tissue%20networks&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Zitnik,%20Marinka&rft.date=2017-07-15&rft.volume=33&rft.issue=14&rft.spage=i190&rft.epage=i198&rft.pages=i190-i198&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btx252&rft_dat=%3Cproquest_pubme%3E2305193808%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937517867&rft_id=info:pmid/28881986&rfr_iscdi=true