miniMDS: 3D structural inference from high-resolution Hi-C data
Recent experiments have provided Hi-C data at resolution as high as 1 kbp. However, 3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible using existing methods. We have developed miniMDS, an approximation of multidimensional scaling (MDS) that partitions a H...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2017-07, Vol.33 (14), p.i261-i266 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | i266 |
---|---|
container_issue | 14 |
container_start_page | i261 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 33 |
creator | Rieber, Lila Mahony, Shaun |
description | Recent experiments have provided Hi-C data at resolution as high as 1 kbp. However, 3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible using existing methods.
We have developed miniMDS, an approximation of multidimensional scaling (MDS) that partitions a Hi-C dataset, performs high-resolution MDS separately on each partition, and then reassembles the partitions using low-resolution MDS. miniMDS is faster, more accurate, and uses less memory than existing methods for inferring the human genome at high resolution (10 kbp).
A Python implementation of miniMDS is available on GitHub: https://github.com/seqcode/miniMDS .
mahony@psu.edu.
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btx271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5870652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937517398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-828e5e88575e059bde5c94d95687c79a3303faeff460affd115d5f2bf2fd5b673</originalsourceid><addsrcrecordid>eNqFkc1OwzAQhC0EolB4BFCOXELtuBs7HECo5U8q4gCcLcexW6MkLraD4O0JaqnoidOutDOjWX0InRB8TnBBR6V1tjXONzJaFUZl_MwY2UEHhOYsHXNCdjc7pgN0GMIbxhgw5PtokHHOM4zpAbpqbGsfp88XCZ0mIfpOxc7LOumztdet0onxrkkWdr5IvQ6u7qJ1bXJv00lSySiP0J6RddDH6zlEr7c3L5P7dPZ09zC5nqUKCI4pz7gGzTkw0BiKstKginFVQM6ZYoWkFFMjtTHjHEtjKkKgApOVJjMVlDmjQ3S5yl12ZaMrpdvY1xRLbxvpv4STVmxfWrsQc_chgDOcQ9YHnK0DvHvvdIiisUHpupatdl0QGcVAipxQ8q-UFJQBYbTgvRRWUuVdCF6bTSOCxQ8nsc1JrDj1vtO_72xcv2DoN6Z3lMc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937517398</pqid></control><display><type>article</type><title>miniMDS: 3D structural inference from high-resolution Hi-C data</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Rieber, Lila ; Mahony, Shaun</creator><creatorcontrib>Rieber, Lila ; Mahony, Shaun</creatorcontrib><description>Recent experiments have provided Hi-C data at resolution as high as 1 kbp. However, 3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible using existing methods.
We have developed miniMDS, an approximation of multidimensional scaling (MDS) that partitions a Hi-C dataset, performs high-resolution MDS separately on each partition, and then reassembles the partitions using low-resolution MDS. miniMDS is faster, more accurate, and uses less memory than existing methods for inferring the human genome at high resolution (10 kbp).
A Python implementation of miniMDS is available on GitHub: https://github.com/seqcode/miniMDS .
mahony@psu.edu.
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btx271</identifier><identifier>PMID: 28882003</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; bioinformatics ; Chromosomes, Human - metabolism ; computer software ; data collection ; genome ; Genome, Human ; Genomics - methods ; Humans ; Models, Molecular ; Molecular Conformation ; multidimensional scaling ; Sequence Analysis, DNA - methods ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2017-07, Vol.33 (14), p.i261-i266</ispartof><rights>The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com</rights><rights>The Author 2017. Published by Oxford University Press. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-828e5e88575e059bde5c94d95687c79a3303faeff460affd115d5f2bf2fd5b673</citedby><cites>FETCH-LOGICAL-c510t-828e5e88575e059bde5c94d95687c79a3303faeff460affd115d5f2bf2fd5b673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870652/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870652/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28882003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rieber, Lila</creatorcontrib><creatorcontrib>Mahony, Shaun</creatorcontrib><title>miniMDS: 3D structural inference from high-resolution Hi-C data</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Recent experiments have provided Hi-C data at resolution as high as 1 kbp. However, 3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible using existing methods.
We have developed miniMDS, an approximation of multidimensional scaling (MDS) that partitions a Hi-C dataset, performs high-resolution MDS separately on each partition, and then reassembles the partitions using low-resolution MDS. miniMDS is faster, more accurate, and uses less memory than existing methods for inferring the human genome at high resolution (10 kbp).
A Python implementation of miniMDS is available on GitHub: https://github.com/seqcode/miniMDS .
mahony@psu.edu.
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>bioinformatics</subject><subject>Chromosomes, Human - metabolism</subject><subject>computer software</subject><subject>data collection</subject><subject>genome</subject><subject>Genome, Human</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>multidimensional scaling</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1OwzAQhC0EolB4BFCOXELtuBs7HECo5U8q4gCcLcexW6MkLraD4O0JaqnoidOutDOjWX0InRB8TnBBR6V1tjXONzJaFUZl_MwY2UEHhOYsHXNCdjc7pgN0GMIbxhgw5PtokHHOM4zpAbpqbGsfp88XCZ0mIfpOxc7LOumztdet0onxrkkWdr5IvQ6u7qJ1bXJv00lSySiP0J6RddDH6zlEr7c3L5P7dPZ09zC5nqUKCI4pz7gGzTkw0BiKstKginFVQM6ZYoWkFFMjtTHjHEtjKkKgApOVJjMVlDmjQ3S5yl12ZaMrpdvY1xRLbxvpv4STVmxfWrsQc_chgDOcQ9YHnK0DvHvvdIiisUHpupatdl0QGcVAipxQ8q-UFJQBYbTgvRRWUuVdCF6bTSOCxQ8nsc1JrDj1vtO_72xcv2DoN6Z3lMc</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Rieber, Lila</creator><creator>Mahony, Shaun</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20170715</creationdate><title>miniMDS: 3D structural inference from high-resolution Hi-C data</title><author>Rieber, Lila ; Mahony, Shaun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-828e5e88575e059bde5c94d95687c79a3303faeff460affd115d5f2bf2fd5b673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>bioinformatics</topic><topic>Chromosomes, Human - metabolism</topic><topic>computer software</topic><topic>data collection</topic><topic>genome</topic><topic>Genome, Human</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>multidimensional scaling</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rieber, Lila</creatorcontrib><creatorcontrib>Mahony, Shaun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rieber, Lila</au><au>Mahony, Shaun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miniMDS: 3D structural inference from high-resolution Hi-C data</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2017-07-15</date><risdate>2017</risdate><volume>33</volume><issue>14</issue><spage>i261</spage><epage>i266</epage><pages>i261-i266</pages><issn>1367-4803</issn><issn>1460-2059</issn><eissn>1367-4811</eissn><abstract>Recent experiments have provided Hi-C data at resolution as high as 1 kbp. However, 3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible using existing methods.
We have developed miniMDS, an approximation of multidimensional scaling (MDS) that partitions a Hi-C dataset, performs high-resolution MDS separately on each partition, and then reassembles the partitions using low-resolution MDS. miniMDS is faster, more accurate, and uses less memory than existing methods for inferring the human genome at high resolution (10 kbp).
A Python implementation of miniMDS is available on GitHub: https://github.com/seqcode/miniMDS .
mahony@psu.edu.
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28882003</pmid><doi>10.1093/bioinformatics/btx271</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2017-07, Vol.33 (14), p.i261-i266 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5870652 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms bioinformatics Chromosomes, Human - metabolism computer software data collection genome Genome, Human Genomics - methods Humans Models, Molecular Molecular Conformation multidimensional scaling Sequence Analysis, DNA - methods Software |
title | miniMDS: 3D structural inference from high-resolution Hi-C data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miniMDS:%203D%20structural%20inference%20from%20high-resolution%20Hi-C%20data&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Rieber,%20Lila&rft.date=2017-07-15&rft.volume=33&rft.issue=14&rft.spage=i261&rft.epage=i266&rft.pages=i261-i266&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btx271&rft_dat=%3Cproquest_pubme%3E1937517398%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937517398&rft_id=info:pmid/28882003&rfr_iscdi=true |