deBGR: an efficient and near-exact representation of the weighted de Bruijn graph

Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2017-07, Vol.33 (14), p.i133-i141
Hauptverfasser: Pandey, Prashant, Bender, Michael A, Johnson, Rob, Patro, Rob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page i141
container_issue 14
container_start_page i133
container_title Bioinformatics (Oxford, England)
container_volume 33
creator Pandey, Prashant
Bender, Michael A
Johnson, Rob
Patro, Rob
description Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered by PacBio or Oxford Nanopore), efficient k -mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k -mer occurs, which is key in transcriptome assemblers. We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18-28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems. https://github.com/splatlab/debgr . rob.patro@cs.stonybrook.edu. Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btx261
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5870571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937517930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e66f2d66d546ec45cdda63c9168591af51ee6ea1a6c6efa8b503d9e6c892dc7f3</originalsourceid><addsrcrecordid>eNpVUcFuEzEQtRCItoFPAFmcuCy112uvzQGJVrRUqlQVwdlyxuOsq8QOtgPl71mUErWnmdG8ee-NHiFvOPvAmRGny5hjCrlsXItQT5ftvlf8GTnmQo3doDl_fuiZOCIntd4xxiST6iU56rXW3Bh5TG49nl1--0hdohhChIipzYOnCV3p8N5BowW3Beu8mKVyojnQNiH9jXE1NfTUIz0ru3iX6Kq47fSKvAhuXfH1Q12QHxdfvp9_7a5vLq_OP193MAjdOlQq9F4pLweFMEjw3ikBhistDXdBckSFjjsFCoPTS8mEN6hAm97DGMSCfNrzbnfLDXqY_RW3ttsSN678sdlF-3ST4mRX-ZeVemRy5DPBuz1Bri3aCrEhTJBTQmiWD4KJsZ9B7x9USv65w9rsJlbA9dolzLtquRGj5KOZ0Qsi91AoudaC4eCFM_svM_s0M7vPbL57-_iRw9X_kMRf4yKaMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937517930</pqid></control><display><type>article</type><title>deBGR: an efficient and near-exact representation of the weighted de Bruijn graph</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pandey, Prashant ; Bender, Michael A ; Johnson, Rob ; Patro, Rob</creator><creatorcontrib>Pandey, Prashant ; Bender, Michael A ; Johnson, Rob ; Patro, Rob</creatorcontrib><description>Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered by PacBio or Oxford Nanopore), efficient k -mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k -mer occurs, which is key in transcriptome assemblers. We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18-28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems. https://github.com/splatlab/debgr . rob.patro@cs.stonybrook.edu. Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btx261</identifier><identifier>PMID: 28881995</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Computational Biology - methods ; Gene Expression Profiling - methods ; Sequence Analysis, RNA - methods ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2017-07, Vol.33 (14), p.i133-i141</ispartof><rights>The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com</rights><rights>The Author 2017. Published by Oxford University Press. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e66f2d66d546ec45cdda63c9168591af51ee6ea1a6c6efa8b503d9e6c892dc7f3</citedby><cites>FETCH-LOGICAL-c438t-e66f2d66d546ec45cdda63c9168591af51ee6ea1a6c6efa8b503d9e6c892dc7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870571/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870571/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28881995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1430372$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandey, Prashant</creatorcontrib><creatorcontrib>Bender, Michael A</creatorcontrib><creatorcontrib>Johnson, Rob</creatorcontrib><creatorcontrib>Patro, Rob</creatorcontrib><title>deBGR: an efficient and near-exact representation of the weighted de Bruijn graph</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered by PacBio or Oxford Nanopore), efficient k -mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k -mer occurs, which is key in transcriptome assemblers. We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18-28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems. https://github.com/splatlab/debgr . rob.patro@cs.stonybrook.edu. Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Computational Biology - methods</subject><subject>Gene Expression Profiling - methods</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUcFuEzEQtRCItoFPAFmcuCy112uvzQGJVrRUqlQVwdlyxuOsq8QOtgPl71mUErWnmdG8ee-NHiFvOPvAmRGny5hjCrlsXItQT5ftvlf8GTnmQo3doDl_fuiZOCIntd4xxiST6iU56rXW3Bh5TG49nl1--0hdohhChIipzYOnCV3p8N5BowW3Beu8mKVyojnQNiH9jXE1NfTUIz0ru3iX6Kq47fSKvAhuXfH1Q12QHxdfvp9_7a5vLq_OP193MAjdOlQq9F4pLweFMEjw3ikBhistDXdBckSFjjsFCoPTS8mEN6hAm97DGMSCfNrzbnfLDXqY_RW3ttsSN678sdlF-3ST4mRX-ZeVemRy5DPBuz1Bri3aCrEhTJBTQmiWD4KJsZ9B7x9USv65w9rsJlbA9dolzLtquRGj5KOZ0Qsi91AoudaC4eCFM_svM_s0M7vPbL57-_iRw9X_kMRf4yKaMA</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Pandey, Prashant</creator><creator>Bender, Michael A</creator><creator>Johnson, Rob</creator><creator>Patro, Rob</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20170715</creationdate><title>deBGR: an efficient and near-exact representation of the weighted de Bruijn graph</title><author>Pandey, Prashant ; Bender, Michael A ; Johnson, Rob ; Patro, Rob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e66f2d66d546ec45cdda63c9168591af51ee6ea1a6c6efa8b503d9e6c892dc7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computational Biology - methods</topic><topic>Gene Expression Profiling - methods</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Prashant</creatorcontrib><creatorcontrib>Bender, Michael A</creatorcontrib><creatorcontrib>Johnson, Rob</creatorcontrib><creatorcontrib>Patro, Rob</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Prashant</au><au>Bender, Michael A</au><au>Johnson, Rob</au><au>Patro, Rob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>deBGR: an efficient and near-exact representation of the weighted de Bruijn graph</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2017-07-15</date><risdate>2017</risdate><volume>33</volume><issue>14</issue><spage>i133</spage><epage>i141</epage><pages>i133-i141</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered by PacBio or Oxford Nanopore), efficient k -mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k -mer occurs, which is key in transcriptome assemblers. We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18-28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems. https://github.com/splatlab/debgr . rob.patro@cs.stonybrook.edu. Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28881995</pmid><doi>10.1093/bioinformatics/btx261</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2017-07, Vol.33 (14), p.i133-i141
issn 1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5870571
source MEDLINE; Access via Oxford University Press (Open Access Collection); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Computational Biology - methods
Gene Expression Profiling - methods
Sequence Analysis, RNA - methods
Software
title deBGR: an efficient and near-exact representation of the weighted de Bruijn graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=deBGR:%20an%20efficient%20and%20near-exact%20representation%20of%20the%20weighted%20de%20Bruijn%20graph&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Pandey,%20Prashant&rft.date=2017-07-15&rft.volume=33&rft.issue=14&rft.spage=i133&rft.epage=i141&rft.pages=i133-i141&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btx261&rft_dat=%3Cproquest_pubme%3E1937517930%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937517930&rft_id=info:pmid/28881995&rfr_iscdi=true