deBGR: an efficient and near-exact representation of the weighted de Bruijn graph
Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2017-07, Vol.33 (14), p.i133-i141 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | i141 |
---|---|
container_issue | 14 |
container_start_page | i133 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 33 |
creator | Pandey, Prashant Bender, Michael A Johnson, Rob Patro, Rob |
description | Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered by PacBio or Oxford Nanopore), efficient k -mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k -mer occurs, which is key in transcriptome assemblers.
We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18-28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems.
https://github.com/splatlab/debgr .
rob.patro@cs.stonybrook.edu.
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btx261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5870571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937517930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e66f2d66d546ec45cdda63c9168591af51ee6ea1a6c6efa8b503d9e6c892dc7f3</originalsourceid><addsrcrecordid>eNpVUcFuEzEQtRCItoFPAFmcuCy112uvzQGJVrRUqlQVwdlyxuOsq8QOtgPl71mUErWnmdG8ee-NHiFvOPvAmRGny5hjCrlsXItQT5ftvlf8GTnmQo3doDl_fuiZOCIntd4xxiST6iU56rXW3Bh5TG49nl1--0hdohhChIipzYOnCV3p8N5BowW3Beu8mKVyojnQNiH9jXE1NfTUIz0ru3iX6Kq47fSKvAhuXfH1Q12QHxdfvp9_7a5vLq_OP193MAjdOlQq9F4pLweFMEjw3ikBhistDXdBckSFjjsFCoPTS8mEN6hAm97DGMSCfNrzbnfLDXqY_RW3ttsSN678sdlF-3ST4mRX-ZeVemRy5DPBuz1Bri3aCrEhTJBTQmiWD4KJsZ9B7x9USv65w9rsJlbA9dolzLtquRGj5KOZ0Qsi91AoudaC4eCFM_svM_s0M7vPbL57-_iRw9X_kMRf4yKaMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937517930</pqid></control><display><type>article</type><title>deBGR: an efficient and near-exact representation of the weighted de Bruijn graph</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pandey, Prashant ; Bender, Michael A ; Johnson, Rob ; Patro, Rob</creator><creatorcontrib>Pandey, Prashant ; Bender, Michael A ; Johnson, Rob ; Patro, Rob</creatorcontrib><description>Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered by PacBio or Oxford Nanopore), efficient k -mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k -mer occurs, which is key in transcriptome assemblers.
We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18-28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems.
https://github.com/splatlab/debgr .
rob.patro@cs.stonybrook.edu.
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btx261</identifier><identifier>PMID: 28881995</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Computational Biology - methods ; Gene Expression Profiling - methods ; Sequence Analysis, RNA - methods ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2017-07, Vol.33 (14), p.i133-i141</ispartof><rights>The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com</rights><rights>The Author 2017. Published by Oxford University Press. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e66f2d66d546ec45cdda63c9168591af51ee6ea1a6c6efa8b503d9e6c892dc7f3</citedby><cites>FETCH-LOGICAL-c438t-e66f2d66d546ec45cdda63c9168591af51ee6ea1a6c6efa8b503d9e6c892dc7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870571/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870571/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28881995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1430372$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandey, Prashant</creatorcontrib><creatorcontrib>Bender, Michael A</creatorcontrib><creatorcontrib>Johnson, Rob</creatorcontrib><creatorcontrib>Patro, Rob</creatorcontrib><title>deBGR: an efficient and near-exact representation of the weighted de Bruijn graph</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered by PacBio or Oxford Nanopore), efficient k -mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k -mer occurs, which is key in transcriptome assemblers.
We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18-28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems.
https://github.com/splatlab/debgr .
rob.patro@cs.stonybrook.edu.
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Computational Biology - methods</subject><subject>Gene Expression Profiling - methods</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUcFuEzEQtRCItoFPAFmcuCy112uvzQGJVrRUqlQVwdlyxuOsq8QOtgPl71mUErWnmdG8ee-NHiFvOPvAmRGny5hjCrlsXItQT5ftvlf8GTnmQo3doDl_fuiZOCIntd4xxiST6iU56rXW3Bh5TG49nl1--0hdohhChIipzYOnCV3p8N5BowW3Beu8mKVyojnQNiH9jXE1NfTUIz0ru3iX6Kq47fSKvAhuXfH1Q12QHxdfvp9_7a5vLq_OP193MAjdOlQq9F4pLweFMEjw3ikBhistDXdBckSFjjsFCoPTS8mEN6hAm97DGMSCfNrzbnfLDXqY_RW3ttsSN678sdlF-3ST4mRX-ZeVemRy5DPBuz1Bri3aCrEhTJBTQmiWD4KJsZ9B7x9USv65w9rsJlbA9dolzLtquRGj5KOZ0Qsi91AoudaC4eCFM_svM_s0M7vPbL57-_iRw9X_kMRf4yKaMA</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Pandey, Prashant</creator><creator>Bender, Michael A</creator><creator>Johnson, Rob</creator><creator>Patro, Rob</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20170715</creationdate><title>deBGR: an efficient and near-exact representation of the weighted de Bruijn graph</title><author>Pandey, Prashant ; Bender, Michael A ; Johnson, Rob ; Patro, Rob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e66f2d66d546ec45cdda63c9168591af51ee6ea1a6c6efa8b503d9e6c892dc7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computational Biology - methods</topic><topic>Gene Expression Profiling - methods</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Prashant</creatorcontrib><creatorcontrib>Bender, Michael A</creatorcontrib><creatorcontrib>Johnson, Rob</creatorcontrib><creatorcontrib>Patro, Rob</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Prashant</au><au>Bender, Michael A</au><au>Johnson, Rob</au><au>Patro, Rob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>deBGR: an efficient and near-exact representation of the weighted de Bruijn graph</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2017-07-15</date><risdate>2017</risdate><volume>33</volume><issue>14</issue><spage>i133</spage><epage>i141</epage><pages>i133-i141</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered by PacBio or Oxford Nanopore), efficient k -mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k -mer occurs, which is key in transcriptome assemblers.
We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18-28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems.
https://github.com/splatlab/debgr .
rob.patro@cs.stonybrook.edu.
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28881995</pmid><doi>10.1093/bioinformatics/btx261</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2017-07, Vol.33 (14), p.i133-i141 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5870571 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Computational Biology - methods Gene Expression Profiling - methods Sequence Analysis, RNA - methods Software |
title | deBGR: an efficient and near-exact representation of the weighted de Bruijn graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=deBGR:%20an%20efficient%20and%20near-exact%20representation%20of%20the%20weighted%20de%20Bruijn%20graph&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Pandey,%20Prashant&rft.date=2017-07-15&rft.volume=33&rft.issue=14&rft.spage=i133&rft.epage=i141&rft.pages=i133-i141&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btx261&rft_dat=%3Cproquest_pubme%3E1937517930%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937517930&rft_id=info:pmid/28881995&rfr_iscdi=true |