Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release
Abstract In the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e., PEG and gelatin + PEG hydrogels) ha...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2015-05, Vol.50, p.47-55 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | |
container_start_page | 47 |
container_title | Biomaterials |
container_volume | 50 |
creator | Cohen, Hannah Caitlin Frost, Dustin C Lieberthal, Tyler Jacob Li, Lingjun Kao, W. John |
description | Abstract In the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e., PEG and gelatin + PEG hydrogels) had enhanced primary granule release, yet similar tertiary granule release compared with PMNs cultured on polydimethylsiloxane or tissue culture polystyrene. PMN primary granules contain microbicidal proteins and proteases, which can potentially injure bystander cells, degrade the extracellular matrix, and promote inflammation. Here, we sought to understand the mechanism of the enhanced primary granule release from PMNs on PEG hydrogels. We found that primary granule release from PMNs on PEG hydrogels was adhesion mediated and involved Src family kinases and PI3K-γ. The addition of gelatin to PEG hydrogels did not further enhance PMN primary granule release. Using stable-isotope dimethyl labeling-based shotgun proteomics, we identified many serum proteins – including Ig gamma constant chain region proteins and alpha-1-acid glycoprotein 1 – that were absorbed/adsorbed in higher quantities on PEG hydrogels than on TCPS, and may be involved in mediating PMN primary granule release. Ultimately, this mechanistic knowledge can be used to direct inflammation and wound healing following biomaterial implantation to promote a more favorable healing response. |
doi_str_mv | 10.1016/j.biomaterials.2015.01.050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5866922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961215000678</els_id><sourcerecordid>1660926421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-bc4f49c18eb3f8812c9752a334d4d6c1c5cb337c6903c6de06542784737b9afa3</originalsourceid><addsrcrecordid>eNqNks9uEzEQxlcIREPhFdCKE5cNY3tt73KoRMtfqRKHwtnyemdTJ44d7N1KeRCehPfgmXCaUAUu7cGyRvPzNzOeryheEZgTIOLNct7ZsNYjRqtdmlMgfA5kDhweFTPSyKbiLfDHxQxITatWEHpSPEtpCTmGmj4tTiiXTNQtnxU_z4-kyt4OA0b0Y47ctoy4mFxOllfRlCvrdcJUat-Xm-uQ8rE-JDvaHktW7dPV71-l9eUmuO06xIz4yTjUsXQ4rYLZZq1NtGsdt7c6uW4ulYNF1H5ymCtmOuHz4smQ-8EXh_u0-P7xw7eLz9Xl109fLt5dVkbUZKw6Uw91a0iDHRuahlDTSk41Y3Vf98IQw03HmDSiBWZEjyB4TWVTSya7Vg-anRZne93N1K2xN3nyqJ06tKiCturfjLfXahFuFG-EaCnNAq8PAjH8mDCNam2TQee0xzAlRfPCGG1qIu9FiZTACHAOD0CpFFJS0tyPCgEtFTUlGX27R00MKUUc7uYkoHbGUkt1bCy1M5YCouC2pZfHP3X39K-TMvB-D2De143FqJKx6A32NqIZVR_sw-qc_SdjnPXWaLfCLaZlmKLfvSEqUQXqamfxncMJBwAhG_YH91__3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660926421</pqid></control><display><type>article</type><title>Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Cohen, Hannah Caitlin ; Frost, Dustin C ; Lieberthal, Tyler Jacob ; Li, Lingjun ; Kao, W. John</creator><creatorcontrib>Cohen, Hannah Caitlin ; Frost, Dustin C ; Lieberthal, Tyler Jacob ; Li, Lingjun ; Kao, W. John</creatorcontrib><description>Abstract In the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e., PEG and gelatin + PEG hydrogels) had enhanced primary granule release, yet similar tertiary granule release compared with PMNs cultured on polydimethylsiloxane or tissue culture polystyrene. PMN primary granules contain microbicidal proteins and proteases, which can potentially injure bystander cells, degrade the extracellular matrix, and promote inflammation. Here, we sought to understand the mechanism of the enhanced primary granule release from PMNs on PEG hydrogels. We found that primary granule release from PMNs on PEG hydrogels was adhesion mediated and involved Src family kinases and PI3K-γ. The addition of gelatin to PEG hydrogels did not further enhance PMN primary granule release. Using stable-isotope dimethyl labeling-based shotgun proteomics, we identified many serum proteins – including Ig gamma constant chain region proteins and alpha-1-acid glycoprotein 1 – that were absorbed/adsorbed in higher quantities on PEG hydrogels than on TCPS, and may be involved in mediating PMN primary granule release. Ultimately, this mechanistic knowledge can be used to direct inflammation and wound healing following biomaterial implantation to promote a more favorable healing response.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.01.050</identifier><identifier>PMID: 25736495</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Acute inflammation ; adhesion ; Adsorption ; Adult ; Advanced Basic Science ; Animals ; biobased products ; biocompatible materials ; Biocompatible Materials - pharmacology ; Biomaterials ; Biomedical materials ; blood proteins ; Blood Proteins - metabolism ; Cattle ; Cell Degranulation - drug effects ; Cells, Cultured ; Cytoplasmic Granules - drug effects ; Cytoplasmic Granules - metabolism ; Degranulation ; Dentistry ; extracellular matrix ; Gelatin ; glycoproteins ; Granular materials ; Granules ; Humans ; Hydrogels ; Hydrogels - pharmacology ; inflammation ; Kinases ; Matrix Metalloproteinase 9 - metabolism ; N-Formylmethionine Leucyl-Phenylalanine - pharmacology ; Neutrophil ; Neutrophils - drug effects ; Neutrophils - enzymology ; Peroxidase - metabolism ; Phosphatidylinositol 3-Kinases - metabolism ; phosphotransferases (kinases) ; Poly(ethylene glycol) ; polydimethylsiloxane ; polyethylene glycol ; Polyethylene Glycols - pharmacology ; polystyrenes ; Polystyrenes - pharmacology ; Protein adsorption ; proteinases ; proteomics ; Receptors, Formyl Peptide - metabolism ; src-Family Kinases - metabolism ; stable isotopes ; Surgical implants ; TCP (protocol) ; tissue culture</subject><ispartof>Biomaterials, 2015-05, Vol.50, p.47-55</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-bc4f49c18eb3f8812c9752a334d4d6c1c5cb337c6903c6de06542784737b9afa3</citedby><cites>FETCH-LOGICAL-c641t-bc4f49c18eb3f8812c9752a334d4d6c1c5cb337c6903c6de06542784737b9afa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961215000678$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25736495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Hannah Caitlin</creatorcontrib><creatorcontrib>Frost, Dustin C</creatorcontrib><creatorcontrib>Lieberthal, Tyler Jacob</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Kao, W. John</creatorcontrib><title>Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract In the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e., PEG and gelatin + PEG hydrogels) had enhanced primary granule release, yet similar tertiary granule release compared with PMNs cultured on polydimethylsiloxane or tissue culture polystyrene. PMN primary granules contain microbicidal proteins and proteases, which can potentially injure bystander cells, degrade the extracellular matrix, and promote inflammation. Here, we sought to understand the mechanism of the enhanced primary granule release from PMNs on PEG hydrogels. We found that primary granule release from PMNs on PEG hydrogels was adhesion mediated and involved Src family kinases and PI3K-γ. The addition of gelatin to PEG hydrogels did not further enhance PMN primary granule release. Using stable-isotope dimethyl labeling-based shotgun proteomics, we identified many serum proteins – including Ig gamma constant chain region proteins and alpha-1-acid glycoprotein 1 – that were absorbed/adsorbed in higher quantities on PEG hydrogels than on TCPS, and may be involved in mediating PMN primary granule release. Ultimately, this mechanistic knowledge can be used to direct inflammation and wound healing following biomaterial implantation to promote a more favorable healing response.</description><subject>Acute inflammation</subject><subject>adhesion</subject><subject>Adsorption</subject><subject>Adult</subject><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>biobased products</subject><subject>biocompatible materials</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>blood proteins</subject><subject>Blood Proteins - metabolism</subject><subject>Cattle</subject><subject>Cell Degranulation - drug effects</subject><subject>Cells, Cultured</subject><subject>Cytoplasmic Granules - drug effects</subject><subject>Cytoplasmic Granules - metabolism</subject><subject>Degranulation</subject><subject>Dentistry</subject><subject>extracellular matrix</subject><subject>Gelatin</subject><subject>glycoproteins</subject><subject>Granular materials</subject><subject>Granules</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>inflammation</subject><subject>Kinases</subject><subject>Matrix Metalloproteinase 9 - metabolism</subject><subject>N-Formylmethionine Leucyl-Phenylalanine - pharmacology</subject><subject>Neutrophil</subject><subject>Neutrophils - drug effects</subject><subject>Neutrophils - enzymology</subject><subject>Peroxidase - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>phosphotransferases (kinases)</subject><subject>Poly(ethylene glycol)</subject><subject>polydimethylsiloxane</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols - pharmacology</subject><subject>polystyrenes</subject><subject>Polystyrenes - pharmacology</subject><subject>Protein adsorption</subject><subject>proteinases</subject><subject>proteomics</subject><subject>Receptors, Formyl Peptide - metabolism</subject><subject>src-Family Kinases - metabolism</subject><subject>stable isotopes</subject><subject>Surgical implants</subject><subject>TCP (protocol)</subject><subject>tissue culture</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9uEzEQxlcIREPhFdCKE5cNY3tt73KoRMtfqRKHwtnyemdTJ44d7N1KeRCehPfgmXCaUAUu7cGyRvPzNzOeryheEZgTIOLNct7ZsNYjRqtdmlMgfA5kDhweFTPSyKbiLfDHxQxITatWEHpSPEtpCTmGmj4tTiiXTNQtnxU_z4-kyt4OA0b0Y47ctoy4mFxOllfRlCvrdcJUat-Xm-uQ8rE-JDvaHktW7dPV71-l9eUmuO06xIz4yTjUsXQ4rYLZZq1NtGsdt7c6uW4ulYNF1H5ymCtmOuHz4smQ-8EXh_u0-P7xw7eLz9Xl109fLt5dVkbUZKw6Uw91a0iDHRuahlDTSk41Y3Vf98IQw03HmDSiBWZEjyB4TWVTSya7Vg-anRZne93N1K2xN3nyqJ06tKiCturfjLfXahFuFG-EaCnNAq8PAjH8mDCNam2TQee0xzAlRfPCGG1qIu9FiZTACHAOD0CpFFJS0tyPCgEtFTUlGX27R00MKUUc7uYkoHbGUkt1bCy1M5YCouC2pZfHP3X39K-TMvB-D2De143FqJKx6A32NqIZVR_sw-qc_SdjnPXWaLfCLaZlmKLfvSEqUQXqamfxncMJBwAhG_YH91__3w</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Cohen, Hannah Caitlin</creator><creator>Frost, Dustin C</creator><creator>Lieberthal, Tyler Jacob</creator><creator>Li, Lingjun</creator><creator>Kao, W. John</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release</title><author>Cohen, Hannah Caitlin ; Frost, Dustin C ; Lieberthal, Tyler Jacob ; Li, Lingjun ; Kao, W. John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-bc4f49c18eb3f8812c9752a334d4d6c1c5cb337c6903c6de06542784737b9afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acute inflammation</topic><topic>adhesion</topic><topic>Adsorption</topic><topic>Adult</topic><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>biobased products</topic><topic>biocompatible materials</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>blood proteins</topic><topic>Blood Proteins - metabolism</topic><topic>Cattle</topic><topic>Cell Degranulation - drug effects</topic><topic>Cells, Cultured</topic><topic>Cytoplasmic Granules - drug effects</topic><topic>Cytoplasmic Granules - metabolism</topic><topic>Degranulation</topic><topic>Dentistry</topic><topic>extracellular matrix</topic><topic>Gelatin</topic><topic>glycoproteins</topic><topic>Granular materials</topic><topic>Granules</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>inflammation</topic><topic>Kinases</topic><topic>Matrix Metalloproteinase 9 - metabolism</topic><topic>N-Formylmethionine Leucyl-Phenylalanine - pharmacology</topic><topic>Neutrophil</topic><topic>Neutrophils - drug effects</topic><topic>Neutrophils - enzymology</topic><topic>Peroxidase - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>phosphotransferases (kinases)</topic><topic>Poly(ethylene glycol)</topic><topic>polydimethylsiloxane</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols - pharmacology</topic><topic>polystyrenes</topic><topic>Polystyrenes - pharmacology</topic><topic>Protein adsorption</topic><topic>proteinases</topic><topic>proteomics</topic><topic>Receptors, Formyl Peptide - metabolism</topic><topic>src-Family Kinases - metabolism</topic><topic>stable isotopes</topic><topic>Surgical implants</topic><topic>TCP (protocol)</topic><topic>tissue culture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Hannah Caitlin</creatorcontrib><creatorcontrib>Frost, Dustin C</creatorcontrib><creatorcontrib>Lieberthal, Tyler Jacob</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Kao, W. John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Hannah Caitlin</au><au>Frost, Dustin C</au><au>Lieberthal, Tyler Jacob</au><au>Li, Lingjun</au><au>Kao, W. John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>50</volume><spage>47</spage><epage>55</epage><pages>47-55</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract In the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e., PEG and gelatin + PEG hydrogels) had enhanced primary granule release, yet similar tertiary granule release compared with PMNs cultured on polydimethylsiloxane or tissue culture polystyrene. PMN primary granules contain microbicidal proteins and proteases, which can potentially injure bystander cells, degrade the extracellular matrix, and promote inflammation. Here, we sought to understand the mechanism of the enhanced primary granule release from PMNs on PEG hydrogels. We found that primary granule release from PMNs on PEG hydrogels was adhesion mediated and involved Src family kinases and PI3K-γ. The addition of gelatin to PEG hydrogels did not further enhance PMN primary granule release. Using stable-isotope dimethyl labeling-based shotgun proteomics, we identified many serum proteins – including Ig gamma constant chain region proteins and alpha-1-acid glycoprotein 1 – that were absorbed/adsorbed in higher quantities on PEG hydrogels than on TCPS, and may be involved in mediating PMN primary granule release. Ultimately, this mechanistic knowledge can be used to direct inflammation and wound healing following biomaterial implantation to promote a more favorable healing response.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25736495</pmid><doi>10.1016/j.biomaterials.2015.01.050</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2015-05, Vol.50, p.47-55 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5866922 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Acute inflammation adhesion Adsorption Adult Advanced Basic Science Animals biobased products biocompatible materials Biocompatible Materials - pharmacology Biomaterials Biomedical materials blood proteins Blood Proteins - metabolism Cattle Cell Degranulation - drug effects Cells, Cultured Cytoplasmic Granules - drug effects Cytoplasmic Granules - metabolism Degranulation Dentistry extracellular matrix Gelatin glycoproteins Granular materials Granules Humans Hydrogels Hydrogels - pharmacology inflammation Kinases Matrix Metalloproteinase 9 - metabolism N-Formylmethionine Leucyl-Phenylalanine - pharmacology Neutrophil Neutrophils - drug effects Neutrophils - enzymology Peroxidase - metabolism Phosphatidylinositol 3-Kinases - metabolism phosphotransferases (kinases) Poly(ethylene glycol) polydimethylsiloxane polyethylene glycol Polyethylene Glycols - pharmacology polystyrenes Polystyrenes - pharmacology Protein adsorption proteinases proteomics Receptors, Formyl Peptide - metabolism src-Family Kinases - metabolism stable isotopes Surgical implants TCP (protocol) tissue culture |
title | Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomaterials%20differentially%20regulate%20Src%20kinases%20and%20phosphoinositide%203-kinase-%CE%B3%20in%20polymorphonuclear%20leukocyte%20primary%20and%20tertiary%20granule%20release&rft.jtitle=Biomaterials&rft.au=Cohen,%20Hannah%20Caitlin&rft.date=2015-05-01&rft.volume=50&rft.spage=47&rft.epage=55&rft.pages=47-55&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.01.050&rft_dat=%3Cproquest_pubme%3E1660926421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660926421&rft_id=info:pmid/25736495&rft_els_id=S0142961215000678&rfr_iscdi=true |