Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release

Abstract In the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e., PEG and gelatin + PEG hydrogels) ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2015-05, Vol.50, p.47-55
Hauptverfasser: Cohen, Hannah Caitlin, Frost, Dustin C, Lieberthal, Tyler Jacob, Li, Lingjun, Kao, W. John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue
container_start_page 47
container_title Biomaterials
container_volume 50
creator Cohen, Hannah Caitlin
Frost, Dustin C
Lieberthal, Tyler Jacob
Li, Lingjun
Kao, W. John
description Abstract In the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e., PEG and gelatin + PEG hydrogels) had enhanced primary granule release, yet similar tertiary granule release compared with PMNs cultured on polydimethylsiloxane or tissue culture polystyrene. PMN primary granules contain microbicidal proteins and proteases, which can potentially injure bystander cells, degrade the extracellular matrix, and promote inflammation. Here, we sought to understand the mechanism of the enhanced primary granule release from PMNs on PEG hydrogels. We found that primary granule release from PMNs on PEG hydrogels was adhesion mediated and involved Src family kinases and PI3K-γ. The addition of gelatin to PEG hydrogels did not further enhance PMN primary granule release. Using stable-isotope dimethyl labeling-based shotgun proteomics, we identified many serum proteins – including Ig gamma constant chain region proteins and alpha-1-acid glycoprotein 1 – that were absorbed/adsorbed in higher quantities on PEG hydrogels than on TCPS, and may be involved in mediating PMN primary granule release. Ultimately, this mechanistic knowledge can be used to direct inflammation and wound healing following biomaterial implantation to promote a more favorable healing response.
doi_str_mv 10.1016/j.biomaterials.2015.01.050
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5866922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961215000678</els_id><sourcerecordid>1660926421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-bc4f49c18eb3f8812c9752a334d4d6c1c5cb337c6903c6de06542784737b9afa3</originalsourceid><addsrcrecordid>eNqNks9uEzEQxlcIREPhFdCKE5cNY3tt73KoRMtfqRKHwtnyemdTJ44d7N1KeRCehPfgmXCaUAUu7cGyRvPzNzOeryheEZgTIOLNct7ZsNYjRqtdmlMgfA5kDhweFTPSyKbiLfDHxQxITatWEHpSPEtpCTmGmj4tTiiXTNQtnxU_z4-kyt4OA0b0Y47ctoy4mFxOllfRlCvrdcJUat-Xm-uQ8rE-JDvaHktW7dPV71-l9eUmuO06xIz4yTjUsXQ4rYLZZq1NtGsdt7c6uW4ulYNF1H5ymCtmOuHz4smQ-8EXh_u0-P7xw7eLz9Xl109fLt5dVkbUZKw6Uw91a0iDHRuahlDTSk41Y3Vf98IQw03HmDSiBWZEjyB4TWVTSya7Vg-anRZne93N1K2xN3nyqJ06tKiCturfjLfXahFuFG-EaCnNAq8PAjH8mDCNam2TQee0xzAlRfPCGG1qIu9FiZTACHAOD0CpFFJS0tyPCgEtFTUlGX27R00MKUUc7uYkoHbGUkt1bCy1M5YCouC2pZfHP3X39K-TMvB-D2De143FqJKx6A32NqIZVR_sw-qc_SdjnPXWaLfCLaZlmKLfvSEqUQXqamfxncMJBwAhG_YH91__3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660926421</pqid></control><display><type>article</type><title>Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Cohen, Hannah Caitlin ; Frost, Dustin C ; Lieberthal, Tyler Jacob ; Li, Lingjun ; Kao, W. John</creator><creatorcontrib>Cohen, Hannah Caitlin ; Frost, Dustin C ; Lieberthal, Tyler Jacob ; Li, Lingjun ; Kao, W. John</creatorcontrib><description>Abstract In the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e., PEG and gelatin + PEG hydrogels) had enhanced primary granule release, yet similar tertiary granule release compared with PMNs cultured on polydimethylsiloxane or tissue culture polystyrene. PMN primary granules contain microbicidal proteins and proteases, which can potentially injure bystander cells, degrade the extracellular matrix, and promote inflammation. Here, we sought to understand the mechanism of the enhanced primary granule release from PMNs on PEG hydrogels. We found that primary granule release from PMNs on PEG hydrogels was adhesion mediated and involved Src family kinases and PI3K-γ. The addition of gelatin to PEG hydrogels did not further enhance PMN primary granule release. Using stable-isotope dimethyl labeling-based shotgun proteomics, we identified many serum proteins – including Ig gamma constant chain region proteins and alpha-1-acid glycoprotein 1 – that were absorbed/adsorbed in higher quantities on PEG hydrogels than on TCPS, and may be involved in mediating PMN primary granule release. Ultimately, this mechanistic knowledge can be used to direct inflammation and wound healing following biomaterial implantation to promote a more favorable healing response.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.01.050</identifier><identifier>PMID: 25736495</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Acute inflammation ; adhesion ; Adsorption ; Adult ; Advanced Basic Science ; Animals ; biobased products ; biocompatible materials ; Biocompatible Materials - pharmacology ; Biomaterials ; Biomedical materials ; blood proteins ; Blood Proteins - metabolism ; Cattle ; Cell Degranulation - drug effects ; Cells, Cultured ; Cytoplasmic Granules - drug effects ; Cytoplasmic Granules - metabolism ; Degranulation ; Dentistry ; extracellular matrix ; Gelatin ; glycoproteins ; Granular materials ; Granules ; Humans ; Hydrogels ; Hydrogels - pharmacology ; inflammation ; Kinases ; Matrix Metalloproteinase 9 - metabolism ; N-Formylmethionine Leucyl-Phenylalanine - pharmacology ; Neutrophil ; Neutrophils - drug effects ; Neutrophils - enzymology ; Peroxidase - metabolism ; Phosphatidylinositol 3-Kinases - metabolism ; phosphotransferases (kinases) ; Poly(ethylene glycol) ; polydimethylsiloxane ; polyethylene glycol ; Polyethylene Glycols - pharmacology ; polystyrenes ; Polystyrenes - pharmacology ; Protein adsorption ; proteinases ; proteomics ; Receptors, Formyl Peptide - metabolism ; src-Family Kinases - metabolism ; stable isotopes ; Surgical implants ; TCP (protocol) ; tissue culture</subject><ispartof>Biomaterials, 2015-05, Vol.50, p.47-55</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-bc4f49c18eb3f8812c9752a334d4d6c1c5cb337c6903c6de06542784737b9afa3</citedby><cites>FETCH-LOGICAL-c641t-bc4f49c18eb3f8812c9752a334d4d6c1c5cb337c6903c6de06542784737b9afa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961215000678$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25736495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Hannah Caitlin</creatorcontrib><creatorcontrib>Frost, Dustin C</creatorcontrib><creatorcontrib>Lieberthal, Tyler Jacob</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Kao, W. John</creatorcontrib><title>Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract In the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e., PEG and gelatin + PEG hydrogels) had enhanced primary granule release, yet similar tertiary granule release compared with PMNs cultured on polydimethylsiloxane or tissue culture polystyrene. PMN primary granules contain microbicidal proteins and proteases, which can potentially injure bystander cells, degrade the extracellular matrix, and promote inflammation. Here, we sought to understand the mechanism of the enhanced primary granule release from PMNs on PEG hydrogels. We found that primary granule release from PMNs on PEG hydrogels was adhesion mediated and involved Src family kinases and PI3K-γ. The addition of gelatin to PEG hydrogels did not further enhance PMN primary granule release. Using stable-isotope dimethyl labeling-based shotgun proteomics, we identified many serum proteins – including Ig gamma constant chain region proteins and alpha-1-acid glycoprotein 1 – that were absorbed/adsorbed in higher quantities on PEG hydrogels than on TCPS, and may be involved in mediating PMN primary granule release. Ultimately, this mechanistic knowledge can be used to direct inflammation and wound healing following biomaterial implantation to promote a more favorable healing response.</description><subject>Acute inflammation</subject><subject>adhesion</subject><subject>Adsorption</subject><subject>Adult</subject><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>biobased products</subject><subject>biocompatible materials</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>blood proteins</subject><subject>Blood Proteins - metabolism</subject><subject>Cattle</subject><subject>Cell Degranulation - drug effects</subject><subject>Cells, Cultured</subject><subject>Cytoplasmic Granules - drug effects</subject><subject>Cytoplasmic Granules - metabolism</subject><subject>Degranulation</subject><subject>Dentistry</subject><subject>extracellular matrix</subject><subject>Gelatin</subject><subject>glycoproteins</subject><subject>Granular materials</subject><subject>Granules</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>inflammation</subject><subject>Kinases</subject><subject>Matrix Metalloproteinase 9 - metabolism</subject><subject>N-Formylmethionine Leucyl-Phenylalanine - pharmacology</subject><subject>Neutrophil</subject><subject>Neutrophils - drug effects</subject><subject>Neutrophils - enzymology</subject><subject>Peroxidase - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>phosphotransferases (kinases)</subject><subject>Poly(ethylene glycol)</subject><subject>polydimethylsiloxane</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols - pharmacology</subject><subject>polystyrenes</subject><subject>Polystyrenes - pharmacology</subject><subject>Protein adsorption</subject><subject>proteinases</subject><subject>proteomics</subject><subject>Receptors, Formyl Peptide - metabolism</subject><subject>src-Family Kinases - metabolism</subject><subject>stable isotopes</subject><subject>Surgical implants</subject><subject>TCP (protocol)</subject><subject>tissue culture</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9uEzEQxlcIREPhFdCKE5cNY3tt73KoRMtfqRKHwtnyemdTJ44d7N1KeRCehPfgmXCaUAUu7cGyRvPzNzOeryheEZgTIOLNct7ZsNYjRqtdmlMgfA5kDhweFTPSyKbiLfDHxQxITatWEHpSPEtpCTmGmj4tTiiXTNQtnxU_z4-kyt4OA0b0Y47ctoy4mFxOllfRlCvrdcJUat-Xm-uQ8rE-JDvaHktW7dPV71-l9eUmuO06xIz4yTjUsXQ4rYLZZq1NtGsdt7c6uW4ulYNF1H5ymCtmOuHz4smQ-8EXh_u0-P7xw7eLz9Xl109fLt5dVkbUZKw6Uw91a0iDHRuahlDTSk41Y3Vf98IQw03HmDSiBWZEjyB4TWVTSya7Vg-anRZne93N1K2xN3nyqJ06tKiCturfjLfXahFuFG-EaCnNAq8PAjH8mDCNam2TQee0xzAlRfPCGG1qIu9FiZTACHAOD0CpFFJS0tyPCgEtFTUlGX27R00MKUUc7uYkoHbGUkt1bCy1M5YCouC2pZfHP3X39K-TMvB-D2De143FqJKx6A32NqIZVR_sw-qc_SdjnPXWaLfCLaZlmKLfvSEqUQXqamfxncMJBwAhG_YH91__3w</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Cohen, Hannah Caitlin</creator><creator>Frost, Dustin C</creator><creator>Lieberthal, Tyler Jacob</creator><creator>Li, Lingjun</creator><creator>Kao, W. John</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release</title><author>Cohen, Hannah Caitlin ; Frost, Dustin C ; Lieberthal, Tyler Jacob ; Li, Lingjun ; Kao, W. John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-bc4f49c18eb3f8812c9752a334d4d6c1c5cb337c6903c6de06542784737b9afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acute inflammation</topic><topic>adhesion</topic><topic>Adsorption</topic><topic>Adult</topic><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>biobased products</topic><topic>biocompatible materials</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>blood proteins</topic><topic>Blood Proteins - metabolism</topic><topic>Cattle</topic><topic>Cell Degranulation - drug effects</topic><topic>Cells, Cultured</topic><topic>Cytoplasmic Granules - drug effects</topic><topic>Cytoplasmic Granules - metabolism</topic><topic>Degranulation</topic><topic>Dentistry</topic><topic>extracellular matrix</topic><topic>Gelatin</topic><topic>glycoproteins</topic><topic>Granular materials</topic><topic>Granules</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>inflammation</topic><topic>Kinases</topic><topic>Matrix Metalloproteinase 9 - metabolism</topic><topic>N-Formylmethionine Leucyl-Phenylalanine - pharmacology</topic><topic>Neutrophil</topic><topic>Neutrophils - drug effects</topic><topic>Neutrophils - enzymology</topic><topic>Peroxidase - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>phosphotransferases (kinases)</topic><topic>Poly(ethylene glycol)</topic><topic>polydimethylsiloxane</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols - pharmacology</topic><topic>polystyrenes</topic><topic>Polystyrenes - pharmacology</topic><topic>Protein adsorption</topic><topic>proteinases</topic><topic>proteomics</topic><topic>Receptors, Formyl Peptide - metabolism</topic><topic>src-Family Kinases - metabolism</topic><topic>stable isotopes</topic><topic>Surgical implants</topic><topic>TCP (protocol)</topic><topic>tissue culture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Hannah Caitlin</creatorcontrib><creatorcontrib>Frost, Dustin C</creatorcontrib><creatorcontrib>Lieberthal, Tyler Jacob</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Kao, W. John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Hannah Caitlin</au><au>Frost, Dustin C</au><au>Lieberthal, Tyler Jacob</au><au>Li, Lingjun</au><au>Kao, W. John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>50</volume><spage>47</spage><epage>55</epage><pages>47-55</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract In the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e., PEG and gelatin + PEG hydrogels) had enhanced primary granule release, yet similar tertiary granule release compared with PMNs cultured on polydimethylsiloxane or tissue culture polystyrene. PMN primary granules contain microbicidal proteins and proteases, which can potentially injure bystander cells, degrade the extracellular matrix, and promote inflammation. Here, we sought to understand the mechanism of the enhanced primary granule release from PMNs on PEG hydrogels. We found that primary granule release from PMNs on PEG hydrogels was adhesion mediated and involved Src family kinases and PI3K-γ. The addition of gelatin to PEG hydrogels did not further enhance PMN primary granule release. Using stable-isotope dimethyl labeling-based shotgun proteomics, we identified many serum proteins – including Ig gamma constant chain region proteins and alpha-1-acid glycoprotein 1 – that were absorbed/adsorbed in higher quantities on PEG hydrogels than on TCPS, and may be involved in mediating PMN primary granule release. Ultimately, this mechanistic knowledge can be used to direct inflammation and wound healing following biomaterial implantation to promote a more favorable healing response.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25736495</pmid><doi>10.1016/j.biomaterials.2015.01.050</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2015-05, Vol.50, p.47-55
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5866922
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acute inflammation
adhesion
Adsorption
Adult
Advanced Basic Science
Animals
biobased products
biocompatible materials
Biocompatible Materials - pharmacology
Biomaterials
Biomedical materials
blood proteins
Blood Proteins - metabolism
Cattle
Cell Degranulation - drug effects
Cells, Cultured
Cytoplasmic Granules - drug effects
Cytoplasmic Granules - metabolism
Degranulation
Dentistry
extracellular matrix
Gelatin
glycoproteins
Granular materials
Granules
Humans
Hydrogels
Hydrogels - pharmacology
inflammation
Kinases
Matrix Metalloproteinase 9 - metabolism
N-Formylmethionine Leucyl-Phenylalanine - pharmacology
Neutrophil
Neutrophils - drug effects
Neutrophils - enzymology
Peroxidase - metabolism
Phosphatidylinositol 3-Kinases - metabolism
phosphotransferases (kinases)
Poly(ethylene glycol)
polydimethylsiloxane
polyethylene glycol
Polyethylene Glycols - pharmacology
polystyrenes
Polystyrenes - pharmacology
Protein adsorption
proteinases
proteomics
Receptors, Formyl Peptide - metabolism
src-Family Kinases - metabolism
stable isotopes
Surgical implants
TCP (protocol)
tissue culture
title Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomaterials%20differentially%20regulate%20Src%20kinases%20and%20phosphoinositide%203-kinase-%CE%B3%20in%20polymorphonuclear%20leukocyte%20primary%20and%20tertiary%20granule%20release&rft.jtitle=Biomaterials&rft.au=Cohen,%20Hannah%20Caitlin&rft.date=2015-05-01&rft.volume=50&rft.spage=47&rft.epage=55&rft.pages=47-55&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.01.050&rft_dat=%3Cproquest_pubme%3E1660926421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660926421&rft_id=info:pmid/25736495&rft_els_id=S0142961215000678&rfr_iscdi=true