Allostery revealed within lipid binding events to membrane proteins

Membrane proteins interact with a myriad of lipid species in the biological membrane, leading to a bewildering number of possible protein−lipid assemblies. Despite this inherent complexity, the identification of specific protein−lipid interactions and the crucial role of lipids in the folding, struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-03, Vol.115 (12), p.2976-2981
Hauptverfasser: Patrick, John W., Boone, Christopher D., Liu, Wen, Conover, Gloria M., Liu, Yang, Cong, Xiao, Laganowsky, Arthur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2981
container_issue 12
container_start_page 2976
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Patrick, John W.
Boone, Christopher D.
Liu, Wen
Conover, Gloria M.
Liu, Yang
Cong, Xiao
Laganowsky, Arthur
description Membrane proteins interact with a myriad of lipid species in the biological membrane, leading to a bewildering number of possible protein−lipid assemblies. Despite this inherent complexity, the identification of specific protein−lipid interactions and the crucial role of lipids in the folding, structure, and function of membrane proteins is emerging from an increasing number of reports. Fundamental questions remain, however, regarding the ability of specific lipid binding events to membrane proteins to alter remote binding sites for lipids of a different type, a property referred to as allostery [Monod J, Wyman J, Changeux JP (1965) J Mol Biol 12:88–118]. Here, we use native mass spectrometry to determine the allosteric nature of heterogeneous lipid binding events to membrane proteins. We monitored individual lipid binding events to the ammonia channel (AmtB) from Escherichia coli, enabling determination of their equilibrium binding constants. We found that different lipid pairs display a range of allosteric modulation. In particular, the binding of phosphatidylethanolamine and cardiolipin-like molecules to AmtB exhibited the largest degree of allosteric modulation, inspiring us to determine the cocrystal structure of AmtB in this lipid environment. The 2.45-Å resolution structure reveals a cardiolipin-like molecule bound to each subunit of the trimeric complex. Mutation of a single residue in AmtB abolishes the positive allosteric modulation observed for binding phosphatidylethanolamine and cardiolipin-like molecules. Our results demonstrate that specific lipid−protein interactions can act as allosteric modulators for the binding of different lipid types to integral membrane proteins.
doi_str_mv 10.1073/pnas.1719813115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5866585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508998</jstor_id><sourcerecordid>26508998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-3e56a0cfdc614d5350e1cb2cd6389c48cd3b06ee37d08329ce156ad33e715be23</originalsourceid><addsrcrecordid>eNpdkb1vFDEQxS0EIkegpgKtoKHZZGyvvXYTKTqFDykSDdTWrj2X82nXXmxfUP77-HQhASoX7zfP8-YR8pbCGYWeny9hyGe0p1pRTql4RlYUNG1lp-E5WQGwvlUd607Iq5x3AKCFgpfkhGkBPePdiqwvpynmgumuSXiLw4Su-e3L1odm8ot3zeiD8-GmqWIouSmxmXEe0xCwWVIs6EN-TV5shinjm4f3lPz8fPVj_bW9_v7l2_ryurWCy9JyFHIAu3FW0s4JLgCpHZl1kittO2UdH0Ei8t6B4kxbpHXAcY49FSMyfkoujr7LfpzR2bpQGiazJD8P6c7EwZt_leC35ibeGqGkFEpUgw9Hg5rYm2x9Qbu1MQS0xdCOc6l1hT49_JLirz3mYmafLU5TjRz32TCglEmtugP68T90F_cp1BsYRoF2ICXnlTo_UjbFnBNuHjemYA4tmkOL5qnFOvH-76CP_J_aKvDuCOxyielJlwKU1orfA1TOorM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101406633</pqid></control><display><type>article</type><title>Allostery revealed within lipid binding events to membrane proteins</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Patrick, John W. ; Boone, Christopher D. ; Liu, Wen ; Conover, Gloria M. ; Liu, Yang ; Cong, Xiao ; Laganowsky, Arthur</creator><creatorcontrib>Patrick, John W. ; Boone, Christopher D. ; Liu, Wen ; Conover, Gloria M. ; Liu, Yang ; Cong, Xiao ; Laganowsky, Arthur ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Membrane proteins interact with a myriad of lipid species in the biological membrane, leading to a bewildering number of possible protein−lipid assemblies. Despite this inherent complexity, the identification of specific protein−lipid interactions and the crucial role of lipids in the folding, structure, and function of membrane proteins is emerging from an increasing number of reports. Fundamental questions remain, however, regarding the ability of specific lipid binding events to membrane proteins to alter remote binding sites for lipids of a different type, a property referred to as allostery [Monod J, Wyman J, Changeux JP (1965) J Mol Biol 12:88–118]. Here, we use native mass spectrometry to determine the allosteric nature of heterogeneous lipid binding events to membrane proteins. We monitored individual lipid binding events to the ammonia channel (AmtB) from Escherichia coli, enabling determination of their equilibrium binding constants. We found that different lipid pairs display a range of allosteric modulation. In particular, the binding of phosphatidylethanolamine and cardiolipin-like molecules to AmtB exhibited the largest degree of allosteric modulation, inspiring us to determine the cocrystal structure of AmtB in this lipid environment. The 2.45-Å resolution structure reveals a cardiolipin-like molecule bound to each subunit of the trimeric complex. Mutation of a single residue in AmtB abolishes the positive allosteric modulation observed for binding phosphatidylethanolamine and cardiolipin-like molecules. Our results demonstrate that specific lipid−protein interactions can act as allosteric modulators for the binding of different lipid types to integral membrane proteins.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1719813115</identifier><identifier>PMID: 29507234</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Allosteric properties ; allostery ; Ammonia ; BASIC BIOLOGICAL SCIENCES ; Binding sites ; Biological Sciences ; Cardiolipin ; Complexity ; E coli ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Integral membrane proteins ; Lipids ; lipid−protein interactions ; Mass spectrometry ; Mass spectroscopy ; membrane proteins ; Modulation ; Modulators ; Molecular structure ; Mutation ; native mass spectrometry ; Phosphatidylethanolamine ; Physical Sciences ; Protein folding ; Protein interaction ; Proteins ; Structure-function relationships</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (12), p.2976-2981</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 20, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-3e56a0cfdc614d5350e1cb2cd6389c48cd3b06ee37d08329ce156ad33e715be23</citedby><cites>FETCH-LOGICAL-c536t-3e56a0cfdc614d5350e1cb2cd6389c48cd3b06ee37d08329ce156ad33e715be23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508998$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508998$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29507234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1433699$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Patrick, John W.</creatorcontrib><creatorcontrib>Boone, Christopher D.</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Conover, Gloria M.</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Cong, Xiao</creatorcontrib><creatorcontrib>Laganowsky, Arthur</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Allostery revealed within lipid binding events to membrane proteins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Membrane proteins interact with a myriad of lipid species in the biological membrane, leading to a bewildering number of possible protein−lipid assemblies. Despite this inherent complexity, the identification of specific protein−lipid interactions and the crucial role of lipids in the folding, structure, and function of membrane proteins is emerging from an increasing number of reports. Fundamental questions remain, however, regarding the ability of specific lipid binding events to membrane proteins to alter remote binding sites for lipids of a different type, a property referred to as allostery [Monod J, Wyman J, Changeux JP (1965) J Mol Biol 12:88–118]. Here, we use native mass spectrometry to determine the allosteric nature of heterogeneous lipid binding events to membrane proteins. We monitored individual lipid binding events to the ammonia channel (AmtB) from Escherichia coli, enabling determination of their equilibrium binding constants. We found that different lipid pairs display a range of allosteric modulation. In particular, the binding of phosphatidylethanolamine and cardiolipin-like molecules to AmtB exhibited the largest degree of allosteric modulation, inspiring us to determine the cocrystal structure of AmtB in this lipid environment. The 2.45-Å resolution structure reveals a cardiolipin-like molecule bound to each subunit of the trimeric complex. Mutation of a single residue in AmtB abolishes the positive allosteric modulation observed for binding phosphatidylethanolamine and cardiolipin-like molecules. Our results demonstrate that specific lipid−protein interactions can act as allosteric modulators for the binding of different lipid types to integral membrane proteins.</description><subject>Allosteric properties</subject><subject>allostery</subject><subject>Ammonia</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cardiolipin</subject><subject>Complexity</subject><subject>E coli</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Integral membrane proteins</subject><subject>Lipids</subject><subject>lipid−protein interactions</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>membrane proteins</subject><subject>Modulation</subject><subject>Modulators</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>native mass spectrometry</subject><subject>Phosphatidylethanolamine</subject><subject>Physical Sciences</subject><subject>Protein folding</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Structure-function relationships</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkb1vFDEQxS0EIkegpgKtoKHZZGyvvXYTKTqFDykSDdTWrj2X82nXXmxfUP77-HQhASoX7zfP8-YR8pbCGYWeny9hyGe0p1pRTql4RlYUNG1lp-E5WQGwvlUd607Iq5x3AKCFgpfkhGkBPePdiqwvpynmgumuSXiLw4Su-e3L1odm8ot3zeiD8-GmqWIouSmxmXEe0xCwWVIs6EN-TV5shinjm4f3lPz8fPVj_bW9_v7l2_ryurWCy9JyFHIAu3FW0s4JLgCpHZl1kittO2UdH0Ei8t6B4kxbpHXAcY49FSMyfkoujr7LfpzR2bpQGiazJD8P6c7EwZt_leC35ibeGqGkFEpUgw9Hg5rYm2x9Qbu1MQS0xdCOc6l1hT49_JLirz3mYmafLU5TjRz32TCglEmtugP68T90F_cp1BsYRoF2ICXnlTo_UjbFnBNuHjemYA4tmkOL5qnFOvH-76CP_J_aKvDuCOxyielJlwKU1orfA1TOorM</recordid><startdate>20180320</startdate><enddate>20180320</enddate><creator>Patrick, John W.</creator><creator>Boone, Christopher D.</creator><creator>Liu, Wen</creator><creator>Conover, Gloria M.</creator><creator>Liu, Yang</creator><creator>Cong, Xiao</creator><creator>Laganowsky, Arthur</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20180320</creationdate><title>Allostery revealed within lipid binding events to membrane proteins</title><author>Patrick, John W. ; Boone, Christopher D. ; Liu, Wen ; Conover, Gloria M. ; Liu, Yang ; Cong, Xiao ; Laganowsky, Arthur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-3e56a0cfdc614d5350e1cb2cd6389c48cd3b06ee37d08329ce156ad33e715be23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Allosteric properties</topic><topic>allostery</topic><topic>Ammonia</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cardiolipin</topic><topic>Complexity</topic><topic>E coli</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Integral membrane proteins</topic><topic>Lipids</topic><topic>lipid−protein interactions</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>membrane proteins</topic><topic>Modulation</topic><topic>Modulators</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>native mass spectrometry</topic><topic>Phosphatidylethanolamine</topic><topic>Physical Sciences</topic><topic>Protein folding</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patrick, John W.</creatorcontrib><creatorcontrib>Boone, Christopher D.</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Conover, Gloria M.</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Cong, Xiao</creatorcontrib><creatorcontrib>Laganowsky, Arthur</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patrick, John W.</au><au>Boone, Christopher D.</au><au>Liu, Wen</au><au>Conover, Gloria M.</au><au>Liu, Yang</au><au>Cong, Xiao</au><au>Laganowsky, Arthur</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allostery revealed within lipid binding events to membrane proteins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-03-20</date><risdate>2018</risdate><volume>115</volume><issue>12</issue><spage>2976</spage><epage>2981</epage><pages>2976-2981</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Membrane proteins interact with a myriad of lipid species in the biological membrane, leading to a bewildering number of possible protein−lipid assemblies. Despite this inherent complexity, the identification of specific protein−lipid interactions and the crucial role of lipids in the folding, structure, and function of membrane proteins is emerging from an increasing number of reports. Fundamental questions remain, however, regarding the ability of specific lipid binding events to membrane proteins to alter remote binding sites for lipids of a different type, a property referred to as allostery [Monod J, Wyman J, Changeux JP (1965) J Mol Biol 12:88–118]. Here, we use native mass spectrometry to determine the allosteric nature of heterogeneous lipid binding events to membrane proteins. We monitored individual lipid binding events to the ammonia channel (AmtB) from Escherichia coli, enabling determination of their equilibrium binding constants. We found that different lipid pairs display a range of allosteric modulation. In particular, the binding of phosphatidylethanolamine and cardiolipin-like molecules to AmtB exhibited the largest degree of allosteric modulation, inspiring us to determine the cocrystal structure of AmtB in this lipid environment. The 2.45-Å resolution structure reveals a cardiolipin-like molecule bound to each subunit of the trimeric complex. Mutation of a single residue in AmtB abolishes the positive allosteric modulation observed for binding phosphatidylethanolamine and cardiolipin-like molecules. Our results demonstrate that specific lipid−protein interactions can act as allosteric modulators for the binding of different lipid types to integral membrane proteins.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29507234</pmid><doi>10.1073/pnas.1719813115</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (12), p.2976-2981
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5866585
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Allosteric properties
allostery
Ammonia
BASIC BIOLOGICAL SCIENCES
Binding sites
Biological Sciences
Cardiolipin
Complexity
E coli
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Integral membrane proteins
Lipids
lipid−protein interactions
Mass spectrometry
Mass spectroscopy
membrane proteins
Modulation
Modulators
Molecular structure
Mutation
native mass spectrometry
Phosphatidylethanolamine
Physical Sciences
Protein folding
Protein interaction
Proteins
Structure-function relationships
title Allostery revealed within lipid binding events to membrane proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allostery%20revealed%20within%20lipid%20binding%20events%20to%20membrane%20proteins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Patrick,%20John%20W.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2018-03-20&rft.volume=115&rft.issue=12&rft.spage=2976&rft.epage=2981&rft.pages=2976-2981&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1719813115&rft_dat=%3Cjstor_pubme%3E26508998%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101406633&rft_id=info:pmid/29507234&rft_jstor_id=26508998&rfr_iscdi=true