Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP

YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-03, Vol.115 (12), p.3042-3047
Hauptverfasser: Lopez-Redondo, Maria Luisa, Coudray, Nicolas, Zhang, Zhening, Alexopoulos, John, Stokes, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3047
container_issue 12
container_start_page 3042
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Lopez-Redondo, Maria Luisa
Coudray, Nicolas
Zhang, Zhening
Alexopoulos, John
Stokes, David L.
description YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues that appear to control access to the transport sites from the cytoplasm. A low-resolution cryo-EM structure revealed changes within the membrane domain that were associated with the alternating access mechanism for transport. In the current work, the resolution of this cryo-EM structure has been extended to 4.1 Å. Comparison with the X-ray structure defines the differences between inward-facing and outward-facing conformations at an atomic level. These differences include rocking and twisting of a four-helix bundle that harbors the Zn2+ transport site and controls its accessibility within each monomer. As previously noted, membrane domains are closely associated in the dimeric structure from cryo-EM but dramatically splayed apart in the X-ray structure. Cysteine crosslinking was used to constrain these membrane domains and to show that this large-scale splaying was not necessary for transport activity. Furthermore, dimer stability was not compromised by mutagenesis of elements in the cytoplasmic domain, suggesting that the extensive interface between membrane domains is a strong determinant of dimerization. As with other secondary transporters, this interface could provide a stable scaffold for movements of the four-helix bundle that confers alternating access of these ions to opposite sides of the membrane.
doi_str_mv 10.1073/pnas.1715051115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5866550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26509009</jstor_id><sourcerecordid>26509009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-24f523cbce2a1c45e9031cd44d091e1595581a37fda02f8ae6e69be9b35a502e3</originalsourceid><addsrcrecordid>eNpdkc2L1TAUxYMoznN07UopuHHTmXvT3LbZCMPgFwwoqAs3hjRN5uXRNs8kFfzvzfONM-oqgfPLIeccxp4inCF0zfl-0ekMOyQgRKR7bIMgsW6FhPtsA8C7uhdcnLBHKe0AQFIPD9kJlwQdJ75h3z7luJq8Rj1Vg04-VS7EKm9tpads46KzX64rbYxNqZqt2erFp7kK7jdjihyWavTOrelwc9r4yWedi8lX7z8-Zg-cnpJ9cnOesi9vXn--fFdffXj7_vLiqjYEMtdcOOKNGYzlGo0gK6FBMwoxljQWSRL1qJvOjRq467VtbSsHK4eGNAG3zSl7dfTdr8NsR2OXXBKpffSzjj9V0F79qyx-q67DD0V92xJBMXh5YxDD99WmrGafjJ0mvdiwJsUBkbdSIBb0xX_oLqylqalQCChAiI4KdX6kTAwpRetuP4OgDtupw3bqbrvy4vnfGW75P2MV4NkR2KXS753elg7LtM0vt-egcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101404475</pqid></control><display><type>article</type><title>Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lopez-Redondo, Maria Luisa ; Coudray, Nicolas ; Zhang, Zhening ; Alexopoulos, John ; Stokes, David L.</creator><creatorcontrib>Lopez-Redondo, Maria Luisa ; Coudray, Nicolas ; Zhang, Zhening ; Alexopoulos, John ; Stokes, David L.</creatorcontrib><description>YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues that appear to control access to the transport sites from the cytoplasm. A low-resolution cryo-EM structure revealed changes within the membrane domain that were associated with the alternating access mechanism for transport. In the current work, the resolution of this cryo-EM structure has been extended to 4.1 Å. Comparison with the X-ray structure defines the differences between inward-facing and outward-facing conformations at an atomic level. These differences include rocking and twisting of a four-helix bundle that harbors the Zn2+ transport site and controls its accessibility within each monomer. As previously noted, membrane domains are closely associated in the dimeric structure from cryo-EM but dramatically splayed apart in the X-ray structure. Cysteine crosslinking was used to constrain these membrane domains and to show that this large-scale splaying was not necessary for transport activity. Furthermore, dimer stability was not compromised by mutagenesis of elements in the cytoplasmic domain, suggesting that the extensive interface between membrane domains is a strong determinant of dimerization. As with other secondary transporters, this interface could provide a stable scaffold for movements of the four-helix bundle that confers alternating access of these ions to opposite sides of the membrane.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1715051115</identifier><identifier>PMID: 29507252</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Access control ; Atomic structure ; Binding Sites ; Biological Sciences ; Cations ; Cells ; Conformation ; Crosslinking ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Cytoplasm ; Deoxyribonucleic acid ; Diffusion ; Dimerization ; Dimers ; DNA ; Domains ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - physiology ; Gram-positive bacteria ; Hydrophobicity ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - physiology ; Membranes ; Models, Molecular ; Mutagenesis ; Protein Conformation ; Protein Domains ; Proteins ; Protonmotive force ; Twisting ; Zinc</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (12), p.3042-3047</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 20, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-24f523cbce2a1c45e9031cd44d091e1595581a37fda02f8ae6e69be9b35a502e3</citedby><cites>FETCH-LOGICAL-c509t-24f523cbce2a1c45e9031cd44d091e1595581a37fda02f8ae6e69be9b35a502e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26509009$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26509009$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29507252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez-Redondo, Maria Luisa</creatorcontrib><creatorcontrib>Coudray, Nicolas</creatorcontrib><creatorcontrib>Zhang, Zhening</creatorcontrib><creatorcontrib>Alexopoulos, John</creatorcontrib><creatorcontrib>Stokes, David L.</creatorcontrib><title>Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues that appear to control access to the transport sites from the cytoplasm. A low-resolution cryo-EM structure revealed changes within the membrane domain that were associated with the alternating access mechanism for transport. In the current work, the resolution of this cryo-EM structure has been extended to 4.1 Å. Comparison with the X-ray structure defines the differences between inward-facing and outward-facing conformations at an atomic level. These differences include rocking and twisting of a four-helix bundle that harbors the Zn2+ transport site and controls its accessibility within each monomer. As previously noted, membrane domains are closely associated in the dimeric structure from cryo-EM but dramatically splayed apart in the X-ray structure. Cysteine crosslinking was used to constrain these membrane domains and to show that this large-scale splaying was not necessary for transport activity. Furthermore, dimer stability was not compromised by mutagenesis of elements in the cytoplasmic domain, suggesting that the extensive interface between membrane domains is a strong determinant of dimerization. As with other secondary transporters, this interface could provide a stable scaffold for movements of the four-helix bundle that confers alternating access of these ions to opposite sides of the membrane.</description><subject>Access control</subject><subject>Atomic structure</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Cations</subject><subject>Cells</subject><subject>Conformation</subject><subject>Crosslinking</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>Cytoplasm</subject><subject>Deoxyribonucleic acid</subject><subject>Diffusion</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>DNA</subject><subject>Domains</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - physiology</subject><subject>Gram-positive bacteria</subject><subject>Hydrophobicity</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - physiology</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Protonmotive force</subject><subject>Twisting</subject><subject>Zinc</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc2L1TAUxYMoznN07UopuHHTmXvT3LbZCMPgFwwoqAs3hjRN5uXRNs8kFfzvzfONM-oqgfPLIeccxp4inCF0zfl-0ekMOyQgRKR7bIMgsW6FhPtsA8C7uhdcnLBHKe0AQFIPD9kJlwQdJ75h3z7luJq8Rj1Vg04-VS7EKm9tpads46KzX64rbYxNqZqt2erFp7kK7jdjihyWavTOrelwc9r4yWedi8lX7z8-Zg-cnpJ9cnOesi9vXn--fFdffXj7_vLiqjYEMtdcOOKNGYzlGo0gK6FBMwoxljQWSRL1qJvOjRq467VtbSsHK4eGNAG3zSl7dfTdr8NsR2OXXBKpffSzjj9V0F79qyx-q67DD0V92xJBMXh5YxDD99WmrGafjJ0mvdiwJsUBkbdSIBb0xX_oLqylqalQCChAiI4KdX6kTAwpRetuP4OgDtupw3bqbrvy4vnfGW75P2MV4NkR2KXS753elg7LtM0vt-egcQ</recordid><startdate>20180320</startdate><enddate>20180320</enddate><creator>Lopez-Redondo, Maria Luisa</creator><creator>Coudray, Nicolas</creator><creator>Zhang, Zhening</creator><creator>Alexopoulos, John</creator><creator>Stokes, David L.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180320</creationdate><title>Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP</title><author>Lopez-Redondo, Maria Luisa ; Coudray, Nicolas ; Zhang, Zhening ; Alexopoulos, John ; Stokes, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-24f523cbce2a1c45e9031cd44d091e1595581a37fda02f8ae6e69be9b35a502e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Access control</topic><topic>Atomic structure</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Cations</topic><topic>Cells</topic><topic>Conformation</topic><topic>Crosslinking</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>Cytoplasm</topic><topic>Deoxyribonucleic acid</topic><topic>Diffusion</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>DNA</topic><topic>Domains</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - physiology</topic><topic>Gram-positive bacteria</topic><topic>Hydrophobicity</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - physiology</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Protonmotive force</topic><topic>Twisting</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Redondo, Maria Luisa</creatorcontrib><creatorcontrib>Coudray, Nicolas</creatorcontrib><creatorcontrib>Zhang, Zhening</creatorcontrib><creatorcontrib>Alexopoulos, John</creatorcontrib><creatorcontrib>Stokes, David L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Redondo, Maria Luisa</au><au>Coudray, Nicolas</au><au>Zhang, Zhening</au><au>Alexopoulos, John</au><au>Stokes, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-03-20</date><risdate>2018</risdate><volume>115</volume><issue>12</issue><spage>3042</spage><epage>3047</epage><pages>3042-3047</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues that appear to control access to the transport sites from the cytoplasm. A low-resolution cryo-EM structure revealed changes within the membrane domain that were associated with the alternating access mechanism for transport. In the current work, the resolution of this cryo-EM structure has been extended to 4.1 Å. Comparison with the X-ray structure defines the differences between inward-facing and outward-facing conformations at an atomic level. These differences include rocking and twisting of a four-helix bundle that harbors the Zn2+ transport site and controls its accessibility within each monomer. As previously noted, membrane domains are closely associated in the dimeric structure from cryo-EM but dramatically splayed apart in the X-ray structure. Cysteine crosslinking was used to constrain these membrane domains and to show that this large-scale splaying was not necessary for transport activity. Furthermore, dimer stability was not compromised by mutagenesis of elements in the cytoplasmic domain, suggesting that the extensive interface between membrane domains is a strong determinant of dimerization. As with other secondary transporters, this interface could provide a stable scaffold for movements of the four-helix bundle that confers alternating access of these ions to opposite sides of the membrane.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29507252</pmid><doi>10.1073/pnas.1715051115</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (12), p.3042-3047
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5866550
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Access control
Atomic structure
Binding Sites
Biological Sciences
Cations
Cells
Conformation
Crosslinking
Cryoelectron Microscopy
Crystallography, X-Ray
Cytoplasm
Deoxyribonucleic acid
Diffusion
Dimerization
Dimers
DNA
Domains
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - physiology
Gram-positive bacteria
Hydrophobicity
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - physiology
Membranes
Models, Molecular
Mutagenesis
Protein Conformation
Protein Domains
Proteins
Protonmotive force
Twisting
Zinc
title Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20the%20alternating%20access%20mechanism%20of%20the%20cation%20diffusion%20facilitator%20YiiP&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lopez-Redondo,%20Maria%20Luisa&rft.date=2018-03-20&rft.volume=115&rft.issue=12&rft.spage=3042&rft.epage=3047&rft.pages=3042-3047&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1715051115&rft_dat=%3Cjstor_pubme%3E26509009%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101404475&rft_id=info:pmid/29507252&rft_jstor_id=26509009&rfr_iscdi=true