Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP
YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-03, Vol.115 (12), p.3042-3047 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3047 |
---|---|
container_issue | 12 |
container_start_page | 3042 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Lopez-Redondo, Maria Luisa Coudray, Nicolas Zhang, Zhening Alexopoulos, John Stokes, David L. |
description | YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues that appear to control access to the transport sites from the cytoplasm. A low-resolution cryo-EM structure revealed changes within the membrane domain that were associated with the alternating access mechanism for transport. In the current work, the resolution of this cryo-EM structure has been extended to 4.1 Å. Comparison with the X-ray structure defines the differences between inward-facing and outward-facing conformations at an atomic level. These differences include rocking and twisting of a four-helix bundle that harbors the Zn2+ transport site and controls its accessibility within each monomer. As previously noted, membrane domains are closely associated in the dimeric structure from cryo-EM but dramatically splayed apart in the X-ray structure. Cysteine crosslinking was used to constrain these membrane domains and to show that this large-scale splaying was not necessary for transport activity. Furthermore, dimer stability was not compromised by mutagenesis of elements in the cytoplasmic domain, suggesting that the extensive interface between membrane domains is a strong determinant of dimerization. As with other secondary transporters, this interface could provide a stable scaffold for movements of the four-helix bundle that confers alternating access of these ions to opposite sides of the membrane. |
doi_str_mv | 10.1073/pnas.1715051115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5866550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26509009</jstor_id><sourcerecordid>26509009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-24f523cbce2a1c45e9031cd44d091e1595581a37fda02f8ae6e69be9b35a502e3</originalsourceid><addsrcrecordid>eNpdkc2L1TAUxYMoznN07UopuHHTmXvT3LbZCMPgFwwoqAs3hjRN5uXRNs8kFfzvzfONM-oqgfPLIeccxp4inCF0zfl-0ekMOyQgRKR7bIMgsW6FhPtsA8C7uhdcnLBHKe0AQFIPD9kJlwQdJ75h3z7luJq8Rj1Vg04-VS7EKm9tpads46KzX64rbYxNqZqt2erFp7kK7jdjihyWavTOrelwc9r4yWedi8lX7z8-Zg-cnpJ9cnOesi9vXn--fFdffXj7_vLiqjYEMtdcOOKNGYzlGo0gK6FBMwoxljQWSRL1qJvOjRq467VtbSsHK4eGNAG3zSl7dfTdr8NsR2OXXBKpffSzjj9V0F79qyx-q67DD0V92xJBMXh5YxDD99WmrGafjJ0mvdiwJsUBkbdSIBb0xX_oLqylqalQCChAiI4KdX6kTAwpRetuP4OgDtupw3bqbrvy4vnfGW75P2MV4NkR2KXS753elg7LtM0vt-egcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101404475</pqid></control><display><type>article</type><title>Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lopez-Redondo, Maria Luisa ; Coudray, Nicolas ; Zhang, Zhening ; Alexopoulos, John ; Stokes, David L.</creator><creatorcontrib>Lopez-Redondo, Maria Luisa ; Coudray, Nicolas ; Zhang, Zhening ; Alexopoulos, John ; Stokes, David L.</creatorcontrib><description>YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues that appear to control access to the transport sites from the cytoplasm. A low-resolution cryo-EM structure revealed changes within the membrane domain that were associated with the alternating access mechanism for transport. In the current work, the resolution of this cryo-EM structure has been extended to 4.1 Å. Comparison with the X-ray structure defines the differences between inward-facing and outward-facing conformations at an atomic level. These differences include rocking and twisting of a four-helix bundle that harbors the Zn2+ transport site and controls its accessibility within each monomer. As previously noted, membrane domains are closely associated in the dimeric structure from cryo-EM but dramatically splayed apart in the X-ray structure. Cysteine crosslinking was used to constrain these membrane domains and to show that this large-scale splaying was not necessary for transport activity. Furthermore, dimer stability was not compromised by mutagenesis of elements in the cytoplasmic domain, suggesting that the extensive interface between membrane domains is a strong determinant of dimerization. As with other secondary transporters, this interface could provide a stable scaffold for movements of the four-helix bundle that confers alternating access of these ions to opposite sides of the membrane.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1715051115</identifier><identifier>PMID: 29507252</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Access control ; Atomic structure ; Binding Sites ; Biological Sciences ; Cations ; Cells ; Conformation ; Crosslinking ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Cytoplasm ; Deoxyribonucleic acid ; Diffusion ; Dimerization ; Dimers ; DNA ; Domains ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - physiology ; Gram-positive bacteria ; Hydrophobicity ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - physiology ; Membranes ; Models, Molecular ; Mutagenesis ; Protein Conformation ; Protein Domains ; Proteins ; Protonmotive force ; Twisting ; Zinc</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (12), p.3042-3047</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 20, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-24f523cbce2a1c45e9031cd44d091e1595581a37fda02f8ae6e69be9b35a502e3</citedby><cites>FETCH-LOGICAL-c509t-24f523cbce2a1c45e9031cd44d091e1595581a37fda02f8ae6e69be9b35a502e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26509009$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26509009$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29507252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez-Redondo, Maria Luisa</creatorcontrib><creatorcontrib>Coudray, Nicolas</creatorcontrib><creatorcontrib>Zhang, Zhening</creatorcontrib><creatorcontrib>Alexopoulos, John</creatorcontrib><creatorcontrib>Stokes, David L.</creatorcontrib><title>Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues that appear to control access to the transport sites from the cytoplasm. A low-resolution cryo-EM structure revealed changes within the membrane domain that were associated with the alternating access mechanism for transport. In the current work, the resolution of this cryo-EM structure has been extended to 4.1 Å. Comparison with the X-ray structure defines the differences between inward-facing and outward-facing conformations at an atomic level. These differences include rocking and twisting of a four-helix bundle that harbors the Zn2+ transport site and controls its accessibility within each monomer. As previously noted, membrane domains are closely associated in the dimeric structure from cryo-EM but dramatically splayed apart in the X-ray structure. Cysteine crosslinking was used to constrain these membrane domains and to show that this large-scale splaying was not necessary for transport activity. Furthermore, dimer stability was not compromised by mutagenesis of elements in the cytoplasmic domain, suggesting that the extensive interface between membrane domains is a strong determinant of dimerization. As with other secondary transporters, this interface could provide a stable scaffold for movements of the four-helix bundle that confers alternating access of these ions to opposite sides of the membrane.</description><subject>Access control</subject><subject>Atomic structure</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Cations</subject><subject>Cells</subject><subject>Conformation</subject><subject>Crosslinking</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>Cytoplasm</subject><subject>Deoxyribonucleic acid</subject><subject>Diffusion</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>DNA</subject><subject>Domains</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - physiology</subject><subject>Gram-positive bacteria</subject><subject>Hydrophobicity</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - physiology</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Protonmotive force</subject><subject>Twisting</subject><subject>Zinc</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc2L1TAUxYMoznN07UopuHHTmXvT3LbZCMPgFwwoqAs3hjRN5uXRNs8kFfzvzfONM-oqgfPLIeccxp4inCF0zfl-0ekMOyQgRKR7bIMgsW6FhPtsA8C7uhdcnLBHKe0AQFIPD9kJlwQdJ75h3z7luJq8Rj1Vg04-VS7EKm9tpads46KzX64rbYxNqZqt2erFp7kK7jdjihyWavTOrelwc9r4yWedi8lX7z8-Zg-cnpJ9cnOesi9vXn--fFdffXj7_vLiqjYEMtdcOOKNGYzlGo0gK6FBMwoxljQWSRL1qJvOjRq467VtbSsHK4eGNAG3zSl7dfTdr8NsR2OXXBKpffSzjj9V0F79qyx-q67DD0V92xJBMXh5YxDD99WmrGafjJ0mvdiwJsUBkbdSIBb0xX_oLqylqalQCChAiI4KdX6kTAwpRetuP4OgDtupw3bqbrvy4vnfGW75P2MV4NkR2KXS753elg7LtM0vt-egcQ</recordid><startdate>20180320</startdate><enddate>20180320</enddate><creator>Lopez-Redondo, Maria Luisa</creator><creator>Coudray, Nicolas</creator><creator>Zhang, Zhening</creator><creator>Alexopoulos, John</creator><creator>Stokes, David L.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180320</creationdate><title>Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP</title><author>Lopez-Redondo, Maria Luisa ; Coudray, Nicolas ; Zhang, Zhening ; Alexopoulos, John ; Stokes, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-24f523cbce2a1c45e9031cd44d091e1595581a37fda02f8ae6e69be9b35a502e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Access control</topic><topic>Atomic structure</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Cations</topic><topic>Cells</topic><topic>Conformation</topic><topic>Crosslinking</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>Cytoplasm</topic><topic>Deoxyribonucleic acid</topic><topic>Diffusion</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>DNA</topic><topic>Domains</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - physiology</topic><topic>Gram-positive bacteria</topic><topic>Hydrophobicity</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - physiology</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Protonmotive force</topic><topic>Twisting</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Redondo, Maria Luisa</creatorcontrib><creatorcontrib>Coudray, Nicolas</creatorcontrib><creatorcontrib>Zhang, Zhening</creatorcontrib><creatorcontrib>Alexopoulos, John</creatorcontrib><creatorcontrib>Stokes, David L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Redondo, Maria Luisa</au><au>Coudray, Nicolas</au><au>Zhang, Zhening</au><au>Alexopoulos, John</au><au>Stokes, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-03-20</date><risdate>2018</risdate><volume>115</volume><issue>12</issue><spage>3042</spage><epage>3047</epage><pages>3042-3047</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues that appear to control access to the transport sites from the cytoplasm. A low-resolution cryo-EM structure revealed changes within the membrane domain that were associated with the alternating access mechanism for transport. In the current work, the resolution of this cryo-EM structure has been extended to 4.1 Å. Comparison with the X-ray structure defines the differences between inward-facing and outward-facing conformations at an atomic level. These differences include rocking and twisting of a four-helix bundle that harbors the Zn2+ transport site and controls its accessibility within each monomer. As previously noted, membrane domains are closely associated in the dimeric structure from cryo-EM but dramatically splayed apart in the X-ray structure. Cysteine crosslinking was used to constrain these membrane domains and to show that this large-scale splaying was not necessary for transport activity. Furthermore, dimer stability was not compromised by mutagenesis of elements in the cytoplasmic domain, suggesting that the extensive interface between membrane domains is a strong determinant of dimerization. As with other secondary transporters, this interface could provide a stable scaffold for movements of the four-helix bundle that confers alternating access of these ions to opposite sides of the membrane.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29507252</pmid><doi>10.1073/pnas.1715051115</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (12), p.3042-3047 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5866550 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Access control Atomic structure Binding Sites Biological Sciences Cations Cells Conformation Crosslinking Cryoelectron Microscopy Crystallography, X-Ray Cytoplasm Deoxyribonucleic acid Diffusion Dimerization Dimers DNA Domains Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - physiology Gram-positive bacteria Hydrophobicity Membrane Transport Proteins - chemistry Membrane Transport Proteins - physiology Membranes Models, Molecular Mutagenesis Protein Conformation Protein Domains Proteins Protonmotive force Twisting Zinc |
title | Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20the%20alternating%20access%20mechanism%20of%20the%20cation%20diffusion%20facilitator%20YiiP&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lopez-Redondo,%20Maria%20Luisa&rft.date=2018-03-20&rft.volume=115&rft.issue=12&rft.spage=3042&rft.epage=3047&rft.pages=3042-3047&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1715051115&rft_dat=%3Cjstor_pubme%3E26509009%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101404475&rft_id=info:pmid/29507252&rft_jstor_id=26509009&rfr_iscdi=true |