Exome Pool-Seq in neurodevelopmental disorders
High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and...
Gespeichert in:
Veröffentlicht in: | European journal of human genetics : EJHG 2017-12, Vol.25 (12), p.1364-1376 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1376 |
---|---|
container_issue | 12 |
container_start_page | 1364 |
container_title | European journal of human genetics : EJHG |
container_volume | 25 |
creator | Popp, Bernt Ekici, Arif B Thiel, Christian T Hoyer, Juliane Wiesener, Antje Kraus, Cornelia Reis, André Zweier, Christiane |
description | High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and fast screening technology in neurodevelopmental disorders (NDDs). Sequencing of 96 individuals can be performed in eight pools of 12 samples on less than one Illumina sequencer lane. In a pilot study with 96 cases we identified 27 variants, likely or possibly affecting function. Twenty five of these were identified in 923 established NDD genes (based on SysID database, status November 2016) (ACTB, AHDC1, ANKRD11, ATP6V1B2, ATRX, CASK, CHD8, GNAS, IFIH1, KCNQ2, KMT2A, KRAS, MAOA, MED12, MED13L, RIT1, SETD5, SIN3A, TCF4, TRAPPC11, TUBA1A, WAC, ZBTB18, ZMYND11), two in 543 (SysID) candidate genes (ZNF292, BPTF), and additionally a de novo loss-of-function variant in LRRC7, not previously implicated in NDDs. Most of them were confirmed to be de novo, but we also identified X-linked or autosomal-dominantly or autosomal-recessively inherited variants. With a detection rate of 28%, Exome Pool-Seq achieves comparable results to individual exome analyses but reduces costs by >85%. Compared with other large scale approaches using Molecular Inversion Probes (MIP) or gene panels, it allows flexible re-analysis of data. Exome Pool-Seq is thus well suited for large-scale, cost-efficient and flexible screening in characterized but heterogeneous entities like NDDs. |
doi_str_mv | 10.1038/s41431-017-0022-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5865117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978297822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-3b05ac0df13e19a3bae94a5609068fe150af1e216c286d640a587e0152195be03</originalsourceid><addsrcrecordid>eNpdkU1LBDEMhosofv8AL7LgxUs1aaed9iKI-AWCgnou3ZmMjsxM13ZH9N_bZVXUQ0ggT16SvIztIRwhSHOcCiwkcsCSAwjBcYVtYlFqrgppVnMNaHhhUG6wrZReAHKzxHW2ISwqoxRssqPz99DT5C6Ejt_T66QdJgONMdT0Rl2Y9TTMfTep2xRiTTHtsLXGd4l2v_I2e7w4fzi74je3l9dnpze8KkQ553IKyldQNygJrZdTT7bwSoMFbRpCBb5BEqgrYXStC_DKlASoBFo1JZDb7GSpOxunPdVVXiP6zs1i2_v44YJv3d_O0D67p_DmlNEKscwCh18CMbyOlOaub1NFXecHCmNyaLW21mowGT34h76EMQ75vEyVRixCZAqXVBVDSpGan2UQ3MINt3TDZTfcwg2HeWb_9xU_E9_vl58cmoRT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978297822</pqid></control><display><type>article</type><title>Exome Pool-Seq in neurodevelopmental disorders</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Popp, Bernt ; Ekici, Arif B ; Thiel, Christian T ; Hoyer, Juliane ; Wiesener, Antje ; Kraus, Cornelia ; Reis, André ; Zweier, Christiane</creator><creatorcontrib>Popp, Bernt ; Ekici, Arif B ; Thiel, Christian T ; Hoyer, Juliane ; Wiesener, Antje ; Kraus, Cornelia ; Reis, André ; Zweier, Christiane</creatorcontrib><description>High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and fast screening technology in neurodevelopmental disorders (NDDs). Sequencing of 96 individuals can be performed in eight pools of 12 samples on less than one Illumina sequencer lane. In a pilot study with 96 cases we identified 27 variants, likely or possibly affecting function. Twenty five of these were identified in 923 established NDD genes (based on SysID database, status November 2016) (ACTB, AHDC1, ANKRD11, ATP6V1B2, ATRX, CASK, CHD8, GNAS, IFIH1, KCNQ2, KMT2A, KRAS, MAOA, MED12, MED13L, RIT1, SETD5, SIN3A, TCF4, TRAPPC11, TUBA1A, WAC, ZBTB18, ZMYND11), two in 543 (SysID) candidate genes (ZNF292, BPTF), and additionally a de novo loss-of-function variant in LRRC7, not previously implicated in NDDs. Most of them were confirmed to be de novo, but we also identified X-linked or autosomal-dominantly or autosomal-recessively inherited variants. With a detection rate of 28%, Exome Pool-Seq achieves comparable results to individual exome analyses but reduces costs by >85%. Compared with other large scale approaches using Molecular Inversion Probes (MIP) or gene panels, it allows flexible re-analysis of data. Exome Pool-Seq is thus well suited for large-scale, cost-efficient and flexible screening in characterized but heterogeneous entities like NDDs.</description><identifier>ISSN: 1018-4813</identifier><identifier>EISSN: 1476-5438</identifier><identifier>DOI: 10.1038/s41431-017-0022-1</identifier><identifier>PMID: 29158550</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Data processing ; Genes ; K-Ras protein ; KCNQ2 protein ; Neurodevelopmental disorders ; Next-generation sequencing ; Potassium channels (voltage-gated)</subject><ispartof>European journal of human genetics : EJHG, 2017-12, Vol.25 (12), p.1364-1376</ispartof><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-3b05ac0df13e19a3bae94a5609068fe150af1e216c286d640a587e0152195be03</citedby><cites>FETCH-LOGICAL-c427t-3b05ac0df13e19a3bae94a5609068fe150af1e216c286d640a587e0152195be03</cites><orcidid>0000-0002-6301-6363 ; 0000-0002-3679-1081 ; 0000-0001-6099-7066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865117/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865117/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29158550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Popp, Bernt</creatorcontrib><creatorcontrib>Ekici, Arif B</creatorcontrib><creatorcontrib>Thiel, Christian T</creatorcontrib><creatorcontrib>Hoyer, Juliane</creatorcontrib><creatorcontrib>Wiesener, Antje</creatorcontrib><creatorcontrib>Kraus, Cornelia</creatorcontrib><creatorcontrib>Reis, André</creatorcontrib><creatorcontrib>Zweier, Christiane</creatorcontrib><title>Exome Pool-Seq in neurodevelopmental disorders</title><title>European journal of human genetics : EJHG</title><addtitle>Eur J Hum Genet</addtitle><description>High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and fast screening technology in neurodevelopmental disorders (NDDs). Sequencing of 96 individuals can be performed in eight pools of 12 samples on less than one Illumina sequencer lane. In a pilot study with 96 cases we identified 27 variants, likely or possibly affecting function. Twenty five of these were identified in 923 established NDD genes (based on SysID database, status November 2016) (ACTB, AHDC1, ANKRD11, ATP6V1B2, ATRX, CASK, CHD8, GNAS, IFIH1, KCNQ2, KMT2A, KRAS, MAOA, MED12, MED13L, RIT1, SETD5, SIN3A, TCF4, TRAPPC11, TUBA1A, WAC, ZBTB18, ZMYND11), two in 543 (SysID) candidate genes (ZNF292, BPTF), and additionally a de novo loss-of-function variant in LRRC7, not previously implicated in NDDs. Most of them were confirmed to be de novo, but we also identified X-linked or autosomal-dominantly or autosomal-recessively inherited variants. With a detection rate of 28%, Exome Pool-Seq achieves comparable results to individual exome analyses but reduces costs by >85%. Compared with other large scale approaches using Molecular Inversion Probes (MIP) or gene panels, it allows flexible re-analysis of data. Exome Pool-Seq is thus well suited for large-scale, cost-efficient and flexible screening in characterized but heterogeneous entities like NDDs.</description><subject>Data processing</subject><subject>Genes</subject><subject>K-Ras protein</subject><subject>KCNQ2 protein</subject><subject>Neurodevelopmental disorders</subject><subject>Next-generation sequencing</subject><subject>Potassium channels (voltage-gated)</subject><issn>1018-4813</issn><issn>1476-5438</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU1LBDEMhosofv8AL7LgxUs1aaed9iKI-AWCgnou3ZmMjsxM13ZH9N_bZVXUQ0ggT16SvIztIRwhSHOcCiwkcsCSAwjBcYVtYlFqrgppVnMNaHhhUG6wrZReAHKzxHW2ISwqoxRssqPz99DT5C6Ejt_T66QdJgONMdT0Rl2Y9TTMfTep2xRiTTHtsLXGd4l2v_I2e7w4fzi74je3l9dnpze8KkQ553IKyldQNygJrZdTT7bwSoMFbRpCBb5BEqgrYXStC_DKlASoBFo1JZDb7GSpOxunPdVVXiP6zs1i2_v44YJv3d_O0D67p_DmlNEKscwCh18CMbyOlOaub1NFXecHCmNyaLW21mowGT34h76EMQ75vEyVRixCZAqXVBVDSpGan2UQ3MINt3TDZTfcwg2HeWb_9xU_E9_vl58cmoRT</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Popp, Bernt</creator><creator>Ekici, Arif B</creator><creator>Thiel, Christian T</creator><creator>Hoyer, Juliane</creator><creator>Wiesener, Antje</creator><creator>Kraus, Cornelia</creator><creator>Reis, André</creator><creator>Zweier, Christiane</creator><general>Nature Publishing Group</general><general>Springer International Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6301-6363</orcidid><orcidid>https://orcid.org/0000-0002-3679-1081</orcidid><orcidid>https://orcid.org/0000-0001-6099-7066</orcidid></search><sort><creationdate>20171201</creationdate><title>Exome Pool-Seq in neurodevelopmental disorders</title><author>Popp, Bernt ; Ekici, Arif B ; Thiel, Christian T ; Hoyer, Juliane ; Wiesener, Antje ; Kraus, Cornelia ; Reis, André ; Zweier, Christiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-3b05ac0df13e19a3bae94a5609068fe150af1e216c286d640a587e0152195be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Data processing</topic><topic>Genes</topic><topic>K-Ras protein</topic><topic>KCNQ2 protein</topic><topic>Neurodevelopmental disorders</topic><topic>Next-generation sequencing</topic><topic>Potassium channels (voltage-gated)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popp, Bernt</creatorcontrib><creatorcontrib>Ekici, Arif B</creatorcontrib><creatorcontrib>Thiel, Christian T</creatorcontrib><creatorcontrib>Hoyer, Juliane</creatorcontrib><creatorcontrib>Wiesener, Antje</creatorcontrib><creatorcontrib>Kraus, Cornelia</creatorcontrib><creatorcontrib>Reis, André</creatorcontrib><creatorcontrib>Zweier, Christiane</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of human genetics : EJHG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popp, Bernt</au><au>Ekici, Arif B</au><au>Thiel, Christian T</au><au>Hoyer, Juliane</au><au>Wiesener, Antje</au><au>Kraus, Cornelia</au><au>Reis, André</au><au>Zweier, Christiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exome Pool-Seq in neurodevelopmental disorders</atitle><jtitle>European journal of human genetics : EJHG</jtitle><addtitle>Eur J Hum Genet</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>25</volume><issue>12</issue><spage>1364</spage><epage>1376</epage><pages>1364-1376</pages><issn>1018-4813</issn><eissn>1476-5438</eissn><abstract>High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and fast screening technology in neurodevelopmental disorders (NDDs). Sequencing of 96 individuals can be performed in eight pools of 12 samples on less than one Illumina sequencer lane. In a pilot study with 96 cases we identified 27 variants, likely or possibly affecting function. Twenty five of these were identified in 923 established NDD genes (based on SysID database, status November 2016) (ACTB, AHDC1, ANKRD11, ATP6V1B2, ATRX, CASK, CHD8, GNAS, IFIH1, KCNQ2, KMT2A, KRAS, MAOA, MED12, MED13L, RIT1, SETD5, SIN3A, TCF4, TRAPPC11, TUBA1A, WAC, ZBTB18, ZMYND11), two in 543 (SysID) candidate genes (ZNF292, BPTF), and additionally a de novo loss-of-function variant in LRRC7, not previously implicated in NDDs. Most of them were confirmed to be de novo, but we also identified X-linked or autosomal-dominantly or autosomal-recessively inherited variants. With a detection rate of 28%, Exome Pool-Seq achieves comparable results to individual exome analyses but reduces costs by >85%. Compared with other large scale approaches using Molecular Inversion Probes (MIP) or gene panels, it allows flexible re-analysis of data. Exome Pool-Seq is thus well suited for large-scale, cost-efficient and flexible screening in characterized but heterogeneous entities like NDDs.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>29158550</pmid><doi>10.1038/s41431-017-0022-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6301-6363</orcidid><orcidid>https://orcid.org/0000-0002-3679-1081</orcidid><orcidid>https://orcid.org/0000-0001-6099-7066</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1018-4813 |
ispartof | European journal of human genetics : EJHG, 2017-12, Vol.25 (12), p.1364-1376 |
issn | 1018-4813 1476-5438 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5865117 |
source | SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Data processing Genes K-Ras protein KCNQ2 protein Neurodevelopmental disorders Next-generation sequencing Potassium channels (voltage-gated) |
title | Exome Pool-Seq in neurodevelopmental disorders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exome%20Pool-Seq%20in%20neurodevelopmental%20disorders&rft.jtitle=European%20journal%20of%20human%20genetics%20:%20EJHG&rft.au=Popp,%20Bernt&rft.date=2017-12-01&rft.volume=25&rft.issue=12&rft.spage=1364&rft.epage=1376&rft.pages=1364-1376&rft.issn=1018-4813&rft.eissn=1476-5438&rft_id=info:doi/10.1038/s41431-017-0022-1&rft_dat=%3Cproquest_pubme%3E1978297822%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978297822&rft_id=info:pmid/29158550&rfr_iscdi=true |