Exome Pool-Seq in neurodevelopmental disorders

High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of human genetics : EJHG 2017-12, Vol.25 (12), p.1364-1376
Hauptverfasser: Popp, Bernt, Ekici, Arif B, Thiel, Christian T, Hoyer, Juliane, Wiesener, Antje, Kraus, Cornelia, Reis, André, Zweier, Christiane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1376
container_issue 12
container_start_page 1364
container_title European journal of human genetics : EJHG
container_volume 25
creator Popp, Bernt
Ekici, Arif B
Thiel, Christian T
Hoyer, Juliane
Wiesener, Antje
Kraus, Cornelia
Reis, André
Zweier, Christiane
description High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and fast screening technology in neurodevelopmental disorders (NDDs). Sequencing of 96 individuals can be performed in eight pools of 12 samples on less than one Illumina sequencer lane. In a pilot study with 96 cases we identified 27 variants, likely or possibly affecting function. Twenty five of these were identified in 923 established NDD genes (based on SysID database, status November 2016) (ACTB, AHDC1, ANKRD11, ATP6V1B2, ATRX, CASK, CHD8, GNAS, IFIH1, KCNQ2, KMT2A, KRAS, MAOA, MED12, MED13L, RIT1, SETD5, SIN3A, TCF4, TRAPPC11, TUBA1A, WAC, ZBTB18, ZMYND11), two in 543 (SysID) candidate genes (ZNF292, BPTF), and additionally a de novo loss-of-function variant in LRRC7, not previously implicated in NDDs. Most of them were confirmed to be de novo, but we also identified X-linked or autosomal-dominantly or autosomal-recessively inherited variants. With a detection rate of 28%, Exome Pool-Seq achieves comparable results to individual exome analyses but reduces costs by >85%. Compared with other large scale approaches using Molecular Inversion Probes (MIP) or gene panels, it allows flexible re-analysis of data. Exome Pool-Seq is thus well suited for large-scale, cost-efficient and flexible screening in characterized but heterogeneous entities like NDDs.
doi_str_mv 10.1038/s41431-017-0022-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5865117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978297822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-3b05ac0df13e19a3bae94a5609068fe150af1e216c286d640a587e0152195be03</originalsourceid><addsrcrecordid>eNpdkU1LBDEMhosofv8AL7LgxUs1aaed9iKI-AWCgnou3ZmMjsxM13ZH9N_bZVXUQ0ggT16SvIztIRwhSHOcCiwkcsCSAwjBcYVtYlFqrgppVnMNaHhhUG6wrZReAHKzxHW2ISwqoxRssqPz99DT5C6Ejt_T66QdJgONMdT0Rl2Y9TTMfTep2xRiTTHtsLXGd4l2v_I2e7w4fzi74je3l9dnpze8KkQ553IKyldQNygJrZdTT7bwSoMFbRpCBb5BEqgrYXStC_DKlASoBFo1JZDb7GSpOxunPdVVXiP6zs1i2_v44YJv3d_O0D67p_DmlNEKscwCh18CMbyOlOaub1NFXecHCmNyaLW21mowGT34h76EMQ75vEyVRixCZAqXVBVDSpGan2UQ3MINt3TDZTfcwg2HeWb_9xU_E9_vl58cmoRT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978297822</pqid></control><display><type>article</type><title>Exome Pool-Seq in neurodevelopmental disorders</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Popp, Bernt ; Ekici, Arif B ; Thiel, Christian T ; Hoyer, Juliane ; Wiesener, Antje ; Kraus, Cornelia ; Reis, André ; Zweier, Christiane</creator><creatorcontrib>Popp, Bernt ; Ekici, Arif B ; Thiel, Christian T ; Hoyer, Juliane ; Wiesener, Antje ; Kraus, Cornelia ; Reis, André ; Zweier, Christiane</creatorcontrib><description>High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and fast screening technology in neurodevelopmental disorders (NDDs). Sequencing of 96 individuals can be performed in eight pools of 12 samples on less than one Illumina sequencer lane. In a pilot study with 96 cases we identified 27 variants, likely or possibly affecting function. Twenty five of these were identified in 923 established NDD genes (based on SysID database, status November 2016) (ACTB, AHDC1, ANKRD11, ATP6V1B2, ATRX, CASK, CHD8, GNAS, IFIH1, KCNQ2, KMT2A, KRAS, MAOA, MED12, MED13L, RIT1, SETD5, SIN3A, TCF4, TRAPPC11, TUBA1A, WAC, ZBTB18, ZMYND11), two in 543 (SysID) candidate genes (ZNF292, BPTF), and additionally a de novo loss-of-function variant in LRRC7, not previously implicated in NDDs. Most of them were confirmed to be de novo, but we also identified X-linked or autosomal-dominantly or autosomal-recessively inherited variants. With a detection rate of 28%, Exome Pool-Seq achieves comparable results to individual exome analyses but reduces costs by &gt;85%. Compared with other large scale approaches using Molecular Inversion Probes (MIP) or gene panels, it allows flexible re-analysis of data. Exome Pool-Seq is thus well suited for large-scale, cost-efficient and flexible screening in characterized but heterogeneous entities like NDDs.</description><identifier>ISSN: 1018-4813</identifier><identifier>EISSN: 1476-5438</identifier><identifier>DOI: 10.1038/s41431-017-0022-1</identifier><identifier>PMID: 29158550</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Data processing ; Genes ; K-Ras protein ; KCNQ2 protein ; Neurodevelopmental disorders ; Next-generation sequencing ; Potassium channels (voltage-gated)</subject><ispartof>European journal of human genetics : EJHG, 2017-12, Vol.25 (12), p.1364-1376</ispartof><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-3b05ac0df13e19a3bae94a5609068fe150af1e216c286d640a587e0152195be03</citedby><cites>FETCH-LOGICAL-c427t-3b05ac0df13e19a3bae94a5609068fe150af1e216c286d640a587e0152195be03</cites><orcidid>0000-0002-6301-6363 ; 0000-0002-3679-1081 ; 0000-0001-6099-7066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865117/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865117/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29158550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Popp, Bernt</creatorcontrib><creatorcontrib>Ekici, Arif B</creatorcontrib><creatorcontrib>Thiel, Christian T</creatorcontrib><creatorcontrib>Hoyer, Juliane</creatorcontrib><creatorcontrib>Wiesener, Antje</creatorcontrib><creatorcontrib>Kraus, Cornelia</creatorcontrib><creatorcontrib>Reis, André</creatorcontrib><creatorcontrib>Zweier, Christiane</creatorcontrib><title>Exome Pool-Seq in neurodevelopmental disorders</title><title>European journal of human genetics : EJHG</title><addtitle>Eur J Hum Genet</addtitle><description>High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and fast screening technology in neurodevelopmental disorders (NDDs). Sequencing of 96 individuals can be performed in eight pools of 12 samples on less than one Illumina sequencer lane. In a pilot study with 96 cases we identified 27 variants, likely or possibly affecting function. Twenty five of these were identified in 923 established NDD genes (based on SysID database, status November 2016) (ACTB, AHDC1, ANKRD11, ATP6V1B2, ATRX, CASK, CHD8, GNAS, IFIH1, KCNQ2, KMT2A, KRAS, MAOA, MED12, MED13L, RIT1, SETD5, SIN3A, TCF4, TRAPPC11, TUBA1A, WAC, ZBTB18, ZMYND11), two in 543 (SysID) candidate genes (ZNF292, BPTF), and additionally a de novo loss-of-function variant in LRRC7, not previously implicated in NDDs. Most of them were confirmed to be de novo, but we also identified X-linked or autosomal-dominantly or autosomal-recessively inherited variants. With a detection rate of 28%, Exome Pool-Seq achieves comparable results to individual exome analyses but reduces costs by &gt;85%. Compared with other large scale approaches using Molecular Inversion Probes (MIP) or gene panels, it allows flexible re-analysis of data. Exome Pool-Seq is thus well suited for large-scale, cost-efficient and flexible screening in characterized but heterogeneous entities like NDDs.</description><subject>Data processing</subject><subject>Genes</subject><subject>K-Ras protein</subject><subject>KCNQ2 protein</subject><subject>Neurodevelopmental disorders</subject><subject>Next-generation sequencing</subject><subject>Potassium channels (voltage-gated)</subject><issn>1018-4813</issn><issn>1476-5438</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU1LBDEMhosofv8AL7LgxUs1aaed9iKI-AWCgnou3ZmMjsxM13ZH9N_bZVXUQ0ggT16SvIztIRwhSHOcCiwkcsCSAwjBcYVtYlFqrgppVnMNaHhhUG6wrZReAHKzxHW2ISwqoxRssqPz99DT5C6Ejt_T66QdJgONMdT0Rl2Y9TTMfTep2xRiTTHtsLXGd4l2v_I2e7w4fzi74je3l9dnpze8KkQ553IKyldQNygJrZdTT7bwSoMFbRpCBb5BEqgrYXStC_DKlASoBFo1JZDb7GSpOxunPdVVXiP6zs1i2_v44YJv3d_O0D67p_DmlNEKscwCh18CMbyOlOaub1NFXecHCmNyaLW21mowGT34h76EMQ75vEyVRixCZAqXVBVDSpGan2UQ3MINt3TDZTfcwg2HeWb_9xU_E9_vl58cmoRT</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Popp, Bernt</creator><creator>Ekici, Arif B</creator><creator>Thiel, Christian T</creator><creator>Hoyer, Juliane</creator><creator>Wiesener, Antje</creator><creator>Kraus, Cornelia</creator><creator>Reis, André</creator><creator>Zweier, Christiane</creator><general>Nature Publishing Group</general><general>Springer International Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6301-6363</orcidid><orcidid>https://orcid.org/0000-0002-3679-1081</orcidid><orcidid>https://orcid.org/0000-0001-6099-7066</orcidid></search><sort><creationdate>20171201</creationdate><title>Exome Pool-Seq in neurodevelopmental disorders</title><author>Popp, Bernt ; Ekici, Arif B ; Thiel, Christian T ; Hoyer, Juliane ; Wiesener, Antje ; Kraus, Cornelia ; Reis, André ; Zweier, Christiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-3b05ac0df13e19a3bae94a5609068fe150af1e216c286d640a587e0152195be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Data processing</topic><topic>Genes</topic><topic>K-Ras protein</topic><topic>KCNQ2 protein</topic><topic>Neurodevelopmental disorders</topic><topic>Next-generation sequencing</topic><topic>Potassium channels (voltage-gated)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popp, Bernt</creatorcontrib><creatorcontrib>Ekici, Arif B</creatorcontrib><creatorcontrib>Thiel, Christian T</creatorcontrib><creatorcontrib>Hoyer, Juliane</creatorcontrib><creatorcontrib>Wiesener, Antje</creatorcontrib><creatorcontrib>Kraus, Cornelia</creatorcontrib><creatorcontrib>Reis, André</creatorcontrib><creatorcontrib>Zweier, Christiane</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of human genetics : EJHG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popp, Bernt</au><au>Ekici, Arif B</au><au>Thiel, Christian T</au><au>Hoyer, Juliane</au><au>Wiesener, Antje</au><au>Kraus, Cornelia</au><au>Reis, André</au><au>Zweier, Christiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exome Pool-Seq in neurodevelopmental disorders</atitle><jtitle>European journal of human genetics : EJHG</jtitle><addtitle>Eur J Hum Genet</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>25</volume><issue>12</issue><spage>1364</spage><epage>1376</epage><pages>1364-1376</pages><issn>1018-4813</issn><eissn>1476-5438</eissn><abstract>High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and fast screening technology in neurodevelopmental disorders (NDDs). Sequencing of 96 individuals can be performed in eight pools of 12 samples on less than one Illumina sequencer lane. In a pilot study with 96 cases we identified 27 variants, likely or possibly affecting function. Twenty five of these were identified in 923 established NDD genes (based on SysID database, status November 2016) (ACTB, AHDC1, ANKRD11, ATP6V1B2, ATRX, CASK, CHD8, GNAS, IFIH1, KCNQ2, KMT2A, KRAS, MAOA, MED12, MED13L, RIT1, SETD5, SIN3A, TCF4, TRAPPC11, TUBA1A, WAC, ZBTB18, ZMYND11), two in 543 (SysID) candidate genes (ZNF292, BPTF), and additionally a de novo loss-of-function variant in LRRC7, not previously implicated in NDDs. Most of them were confirmed to be de novo, but we also identified X-linked or autosomal-dominantly or autosomal-recessively inherited variants. With a detection rate of 28%, Exome Pool-Seq achieves comparable results to individual exome analyses but reduces costs by &gt;85%. Compared with other large scale approaches using Molecular Inversion Probes (MIP) or gene panels, it allows flexible re-analysis of data. Exome Pool-Seq is thus well suited for large-scale, cost-efficient and flexible screening in characterized but heterogeneous entities like NDDs.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>29158550</pmid><doi>10.1038/s41431-017-0022-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6301-6363</orcidid><orcidid>https://orcid.org/0000-0002-3679-1081</orcidid><orcidid>https://orcid.org/0000-0001-6099-7066</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1018-4813
ispartof European journal of human genetics : EJHG, 2017-12, Vol.25 (12), p.1364-1376
issn 1018-4813
1476-5438
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5865117
source SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Data processing
Genes
K-Ras protein
KCNQ2 protein
Neurodevelopmental disorders
Next-generation sequencing
Potassium channels (voltage-gated)
title Exome Pool-Seq in neurodevelopmental disorders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exome%20Pool-Seq%20in%20neurodevelopmental%20disorders&rft.jtitle=European%20journal%20of%20human%20genetics%20:%20EJHG&rft.au=Popp,%20Bernt&rft.date=2017-12-01&rft.volume=25&rft.issue=12&rft.spage=1364&rft.epage=1376&rft.pages=1364-1376&rft.issn=1018-4813&rft.eissn=1476-5438&rft_id=info:doi/10.1038/s41431-017-0022-1&rft_dat=%3Cproquest_pubme%3E1978297822%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978297822&rft_id=info:pmid/29158550&rfr_iscdi=true