Evolution of Eukaryal and Archaeal Pseudouridine Synthase Pus10

In archaea, pseudouridine (Ψ) synthase Pus10 modifies uridine (U) to Ψ at positions 54 and 55 of tRNA. In contrast, Pus10 is not found in bacteria, where modifications at those two positions are carried out by TrmA (U54 to m 5 U54) and TruB (U55 to Ψ55). Many eukaryotes have an apparent redundancy;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular evolution 2018, Vol.86 (1), p.77-89
Hauptverfasser: Fitzek, Elisabeth, Joardar, Archi, Gupta, Ramesh, Geisler, Matt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue 1
container_start_page 77
container_title Journal of molecular evolution
container_volume 86
creator Fitzek, Elisabeth
Joardar, Archi
Gupta, Ramesh
Geisler, Matt
description In archaea, pseudouridine (Ψ) synthase Pus10 modifies uridine (U) to Ψ at positions 54 and 55 of tRNA. In contrast, Pus10 is not found in bacteria, where modifications at those two positions are carried out by TrmA (U54 to m 5 U54) and TruB (U55 to Ψ55). Many eukaryotes have an apparent redundancy; their genomes contain orthologs of archaeal Pus10 and bacterial TrmA and TruB. Although eukaryal Pus10 genes share a conserved catalytic domain with archaeal Pus10 genes, their biological roles are not clear for the two reasons. First, experimental evidence suggests that human Pus10 participates in apoptosis induced by the tumor necrosis factor-related apoptosis-inducing ligand. Whether the function of human Pus10 is in place or in addition to of Ψ synthesis in tRNA is unknown. Second, Pus10 is found in earlier evolutionary branches of fungi (such as chytrid Batrachochytrium ) but is absent in all dikaryon fungi surveyed (Ascomycetes and Basidiomycetes). We did a comprehensive analysis of sequenced genomes and found that orthologs of Pus10, TrmA, and TruB were present in all the animals, plants, and protozoa surveyed. This indicates that the common eukaryotic ancestor possesses all the three genes. Next, we examined 116 archaeal and eukaryotic Pus10 protein sequences to find that Pus10 existed as a single copy gene in all the surveyed genomes despite ancestral whole genome duplications had occurred. This indicates a possible deleterious gene dosage effect. Our results suggest that functional redundancy result in gene loss or neofunctionalization in different evolutionary lineages.
doi_str_mv 10.1007/s00239-018-9827-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5863725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993177832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-8fc00f4a55620697d99fadaf124cc9ef1fe1545bdf0a7ae40443a3b558972433</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhYMotj5-gBsZcONmNM_JZKOUUh9QsGD3IZ1J2qnTpCYzhf57U1tLFdzkEs53z72XA8AVgncIQn4fIMREpBDlqcgxT9dHoIsowenmOQbdKOMU55R2wFkIcwgRZ4Kcgg4WhAomRBc8DlaubpvK2cSZZNB-KL9WdaJsmfR8MVM6fkZBt6VrfVVWVifva9vMVNDJqA0IXoATo-qgL3f1HIyfBuP-Szp8e37t94ZpwUjWpLkpIDRUMZZhmAleCmFUqQzCtCiENshoxCiblAYqrjSFlBJFJozlgmNKyDl42Nou28lCl4W2jVe1XPpqEReWTlXyt2KrmZy6lWR5Rjhm0eB2Z-DdZ6tDIxdVKHRdK6tdGyQSucggZ9-zbv6g83i8jddFShDEeU5wpNCWKrwLwWuzXwZBuUlHbtORMR25SUeuY8_14RX7jp84IoC3QIiSnWp_MPpf1y8G9pr8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993177832</pqid></control><display><type>article</type><title>Evolution of Eukaryal and Archaeal Pseudouridine Synthase Pus10</title><source>SpringerNature Journals</source><creator>Fitzek, Elisabeth ; Joardar, Archi ; Gupta, Ramesh ; Geisler, Matt</creator><creatorcontrib>Fitzek, Elisabeth ; Joardar, Archi ; Gupta, Ramesh ; Geisler, Matt</creatorcontrib><description>In archaea, pseudouridine (Ψ) synthase Pus10 modifies uridine (U) to Ψ at positions 54 and 55 of tRNA. In contrast, Pus10 is not found in bacteria, where modifications at those two positions are carried out by TrmA (U54 to m 5 U54) and TruB (U55 to Ψ55). Many eukaryotes have an apparent redundancy; their genomes contain orthologs of archaeal Pus10 and bacterial TrmA and TruB. Although eukaryal Pus10 genes share a conserved catalytic domain with archaeal Pus10 genes, their biological roles are not clear for the two reasons. First, experimental evidence suggests that human Pus10 participates in apoptosis induced by the tumor necrosis factor-related apoptosis-inducing ligand. Whether the function of human Pus10 is in place or in addition to of Ψ synthesis in tRNA is unknown. Second, Pus10 is found in earlier evolutionary branches of fungi (such as chytrid Batrachochytrium ) but is absent in all dikaryon fungi surveyed (Ascomycetes and Basidiomycetes). We did a comprehensive analysis of sequenced genomes and found that orthologs of Pus10, TrmA, and TruB were present in all the animals, plants, and protozoa surveyed. This indicates that the common eukaryotic ancestor possesses all the three genes. Next, we examined 116 archaeal and eukaryotic Pus10 protein sequences to find that Pus10 existed as a single copy gene in all the surveyed genomes despite ancestral whole genome duplications had occurred. This indicates a possible deleterious gene dosage effect. Our results suggest that functional redundancy result in gene loss or neofunctionalization in different evolutionary lineages.</description><identifier>ISSN: 0022-2844</identifier><identifier>EISSN: 1432-1432</identifier><identifier>DOI: 10.1007/s00239-018-9827-y</identifier><identifier>PMID: 29349599</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animal Genetics and Genomics ; Apoptosis ; Archaea ; Bacteria ; Batrachochytrium ; Biomedical and Life Sciences ; Catalysis ; Cell Biology ; Eukaryotes ; Evolution ; Evolutionary Biology ; Fungi ; Gene dosage ; Gene sequencing ; Genes ; Genomes ; Life Sciences ; Microbiology ; Original Article ; Plant Genetics and Genomics ; Plant Sciences ; Protozoa ; Pseudouridine synthase ; Redundancy ; TRAIL protein ; tRNA ; Uridine</subject><ispartof>Journal of molecular evolution, 2018, Vol.86 (1), p.77-89</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Molecular Evolution is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-8fc00f4a55620697d99fadaf124cc9ef1fe1545bdf0a7ae40443a3b558972433</citedby><cites>FETCH-LOGICAL-c536t-8fc00f4a55620697d99fadaf124cc9ef1fe1545bdf0a7ae40443a3b558972433</cites><orcidid>0000-0003-1888-4652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00239-018-9827-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00239-018-9827-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29349599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fitzek, Elisabeth</creatorcontrib><creatorcontrib>Joardar, Archi</creatorcontrib><creatorcontrib>Gupta, Ramesh</creatorcontrib><creatorcontrib>Geisler, Matt</creatorcontrib><title>Evolution of Eukaryal and Archaeal Pseudouridine Synthase Pus10</title><title>Journal of molecular evolution</title><addtitle>J Mol Evol</addtitle><addtitle>J Mol Evol</addtitle><description>In archaea, pseudouridine (Ψ) synthase Pus10 modifies uridine (U) to Ψ at positions 54 and 55 of tRNA. In contrast, Pus10 is not found in bacteria, where modifications at those two positions are carried out by TrmA (U54 to m 5 U54) and TruB (U55 to Ψ55). Many eukaryotes have an apparent redundancy; their genomes contain orthologs of archaeal Pus10 and bacterial TrmA and TruB. Although eukaryal Pus10 genes share a conserved catalytic domain with archaeal Pus10 genes, their biological roles are not clear for the two reasons. First, experimental evidence suggests that human Pus10 participates in apoptosis induced by the tumor necrosis factor-related apoptosis-inducing ligand. Whether the function of human Pus10 is in place or in addition to of Ψ synthesis in tRNA is unknown. Second, Pus10 is found in earlier evolutionary branches of fungi (such as chytrid Batrachochytrium ) but is absent in all dikaryon fungi surveyed (Ascomycetes and Basidiomycetes). We did a comprehensive analysis of sequenced genomes and found that orthologs of Pus10, TrmA, and TruB were present in all the animals, plants, and protozoa surveyed. This indicates that the common eukaryotic ancestor possesses all the three genes. Next, we examined 116 archaeal and eukaryotic Pus10 protein sequences to find that Pus10 existed as a single copy gene in all the surveyed genomes despite ancestral whole genome duplications had occurred. This indicates a possible deleterious gene dosage effect. Our results suggest that functional redundancy result in gene loss or neofunctionalization in different evolutionary lineages.</description><subject>Animal Genetics and Genomics</subject><subject>Apoptosis</subject><subject>Archaea</subject><subject>Bacteria</subject><subject>Batrachochytrium</subject><subject>Biomedical and Life Sciences</subject><subject>Catalysis</subject><subject>Cell Biology</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Evolutionary Biology</subject><subject>Fungi</subject><subject>Gene dosage</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Original Article</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Protozoa</subject><subject>Pseudouridine synthase</subject><subject>Redundancy</subject><subject>TRAIL protein</subject><subject>tRNA</subject><subject>Uridine</subject><issn>0022-2844</issn><issn>1432-1432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUtLAzEUhYMotj5-gBsZcONmNM_JZKOUUh9QsGD3IZ1J2qnTpCYzhf57U1tLFdzkEs53z72XA8AVgncIQn4fIMREpBDlqcgxT9dHoIsowenmOQbdKOMU55R2wFkIcwgRZ4Kcgg4WhAomRBc8DlaubpvK2cSZZNB-KL9WdaJsmfR8MVM6fkZBt6VrfVVWVifva9vMVNDJqA0IXoATo-qgL3f1HIyfBuP-Szp8e37t94ZpwUjWpLkpIDRUMZZhmAleCmFUqQzCtCiENshoxCiblAYqrjSFlBJFJozlgmNKyDl42Nou28lCl4W2jVe1XPpqEReWTlXyt2KrmZy6lWR5Rjhm0eB2Z-DdZ6tDIxdVKHRdK6tdGyQSucggZ9-zbv6g83i8jddFShDEeU5wpNCWKrwLwWuzXwZBuUlHbtORMR25SUeuY8_14RX7jp84IoC3QIiSnWp_MPpf1y8G9pr8</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Fitzek, Elisabeth</creator><creator>Joardar, Archi</creator><creator>Gupta, Ramesh</creator><creator>Geisler, Matt</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1888-4652</orcidid></search><sort><creationdate>2018</creationdate><title>Evolution of Eukaryal and Archaeal Pseudouridine Synthase Pus10</title><author>Fitzek, Elisabeth ; Joardar, Archi ; Gupta, Ramesh ; Geisler, Matt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-8fc00f4a55620697d99fadaf124cc9ef1fe1545bdf0a7ae40443a3b558972433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal Genetics and Genomics</topic><topic>Apoptosis</topic><topic>Archaea</topic><topic>Bacteria</topic><topic>Batrachochytrium</topic><topic>Biomedical and Life Sciences</topic><topic>Catalysis</topic><topic>Cell Biology</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Evolutionary Biology</topic><topic>Fungi</topic><topic>Gene dosage</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Original Article</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Protozoa</topic><topic>Pseudouridine synthase</topic><topic>Redundancy</topic><topic>TRAIL protein</topic><topic>tRNA</topic><topic>Uridine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitzek, Elisabeth</creatorcontrib><creatorcontrib>Joardar, Archi</creatorcontrib><creatorcontrib>Gupta, Ramesh</creatorcontrib><creatorcontrib>Geisler, Matt</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitzek, Elisabeth</au><au>Joardar, Archi</au><au>Gupta, Ramesh</au><au>Geisler, Matt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Eukaryal and Archaeal Pseudouridine Synthase Pus10</atitle><jtitle>Journal of molecular evolution</jtitle><stitle>J Mol Evol</stitle><addtitle>J Mol Evol</addtitle><date>2018</date><risdate>2018</risdate><volume>86</volume><issue>1</issue><spage>77</spage><epage>89</epage><pages>77-89</pages><issn>0022-2844</issn><eissn>1432-1432</eissn><abstract>In archaea, pseudouridine (Ψ) synthase Pus10 modifies uridine (U) to Ψ at positions 54 and 55 of tRNA. In contrast, Pus10 is not found in bacteria, where modifications at those two positions are carried out by TrmA (U54 to m 5 U54) and TruB (U55 to Ψ55). Many eukaryotes have an apparent redundancy; their genomes contain orthologs of archaeal Pus10 and bacterial TrmA and TruB. Although eukaryal Pus10 genes share a conserved catalytic domain with archaeal Pus10 genes, their biological roles are not clear for the two reasons. First, experimental evidence suggests that human Pus10 participates in apoptosis induced by the tumor necrosis factor-related apoptosis-inducing ligand. Whether the function of human Pus10 is in place or in addition to of Ψ synthesis in tRNA is unknown. Second, Pus10 is found in earlier evolutionary branches of fungi (such as chytrid Batrachochytrium ) but is absent in all dikaryon fungi surveyed (Ascomycetes and Basidiomycetes). We did a comprehensive analysis of sequenced genomes and found that orthologs of Pus10, TrmA, and TruB were present in all the animals, plants, and protozoa surveyed. This indicates that the common eukaryotic ancestor possesses all the three genes. Next, we examined 116 archaeal and eukaryotic Pus10 protein sequences to find that Pus10 existed as a single copy gene in all the surveyed genomes despite ancestral whole genome duplications had occurred. This indicates a possible deleterious gene dosage effect. Our results suggest that functional redundancy result in gene loss or neofunctionalization in different evolutionary lineages.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29349599</pmid><doi>10.1007/s00239-018-9827-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1888-4652</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2844
ispartof Journal of molecular evolution, 2018, Vol.86 (1), p.77-89
issn 0022-2844
1432-1432
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5863725
source SpringerNature Journals
subjects Animal Genetics and Genomics
Apoptosis
Archaea
Bacteria
Batrachochytrium
Biomedical and Life Sciences
Catalysis
Cell Biology
Eukaryotes
Evolution
Evolutionary Biology
Fungi
Gene dosage
Gene sequencing
Genes
Genomes
Life Sciences
Microbiology
Original Article
Plant Genetics and Genomics
Plant Sciences
Protozoa
Pseudouridine synthase
Redundancy
TRAIL protein
tRNA
Uridine
title Evolution of Eukaryal and Archaeal Pseudouridine Synthase Pus10
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Eukaryal%20and%20Archaeal%20Pseudouridine%20Synthase%20Pus10&rft.jtitle=Journal%20of%20molecular%20evolution&rft.au=Fitzek,%20Elisabeth&rft.date=2018&rft.volume=86&rft.issue=1&rft.spage=77&rft.epage=89&rft.pages=77-89&rft.issn=0022-2844&rft.eissn=1432-1432&rft_id=info:doi/10.1007/s00239-018-9827-y&rft_dat=%3Cproquest_pubme%3E1993177832%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993177832&rft_id=info:pmid/29349599&rfr_iscdi=true